Citation: | LIU Chao, JIANG He, DONG Jian-xin, ZHANG Qing-quan. As-cast microstructure and redistribution of elements in high-temperature diffusion annealing in cobalt-base superalloy GH5605[J]. Chinese Journal of Engineering, 2019, 41(3): 359-367. doi: 10.13374/j.issn2095-9389.2019.03.009 |
[1] |
郭建亭. 高溫合金材料學. 北京: 科學出版社, 2008
Guo J T. Materials Science and Engineering for Superalloys. Beijing: Science Press, 2008
|
[2] |
Keyvani M, Garcin T, Fabrègue D, et al. Continuous measurements of recrystallization and grain growth in cobalt super alloys. Metall Mater Trans A, 2017, 48(5): 2363 doi: 10.1007/s11661-017-4027-8
|
[3] |
Favre J, Koizumi Y, Chiba A, et al. Deformation behavior and dynamic recrystallization of biomedical Co-Cr-W-Ni (L-605) alloy. Metall Mater Trans A, 2013, 44(6): 2819 doi: 10.1007/s11661-012-1602-x
|
[4] |
Kumar V A, Gupta R K, Murty S V S N, et al. Hot workability and microstructure control in Co20Cr15W10Ni cobalt based superalloy. J Alloys Compd, 2016, 676: 527 doi: 10.1016/j.jallcom.2016.03.186
|
[5] |
Ueki K, Ueda K, Narushima T. Microstructure and mechanical properties of heat-treated Co-20Cr-15W-10Ni alloy for biomedical application. Metall Mater Trans A, 2016, 47(6): 2773 doi: 10.1007/s11661-016-3488-5
|
[6] |
Yamanaka K, Mori M, Kuramoto K, et al. Development of new Co-Cr-W-based biomedical alloys: effects of microalloying and thermomechanical processing on microstructures and mechanical properties. Mater Des, 2014, 55: 987 doi: 10.1016/j.matdes.2013.10.052
|
[7] |
中國金屬學會高溫材料分會. 中國高溫合金手冊(上卷). 北京: 中國標準出版社, 2012
Academic Committee of the Superalloys, CSM. China Superalloys Handbooks (volume 1). Beijing: Standard Press of China, 2012
|
[8] |
Gui W M, Zhang H Y, Yang M, et al. Influence of type and morphology of carbides on stress-rupture behavior of a cast cobalt-base superalloy. J Alloys Compd, 2017, 728: 145 doi: 10.1016/j.jallcom.2017.08.287
|
[9] |
Gui W M, Zhang H Y, Yang M, et al. The investigation of carbides evolution in a cobalt-base superalloy at elevated temperature. J Alloys Compd, 2017, 695: 1271 doi: 10.1016/j.jallcom.2016.10.256
|
[10] |
Koβmann J, Zenk C H, Lopez-Galilea I, et al. Microsegregation and precipitates of an as-cast Co-based superalloy-microstructural characterization and phase stability modelling. J Mate Sci, 2015, 50(19): 6329 doi: 10.1007/s10853-015-9177-8
|
[11] |
Chiba A, Kurosu S, Akasaka Y, et al. Co-based Alloy for Living Body and Stent: United States Patent, 20130226281A1.2013-8-29
|
[12] |
Magyar S T, Hirakis E C, Gell M L, et al. Oxidation Resistant Cobalt Base Alloy: United States Patent, US4078922A. 1978-3-14
|
[13] |
Favre J, Fabrègue D, Maire E, et al. Grain growth and static recrystallization kinetics in Co-20Cr-15W-10Ni (L-605) cobaltbase superalloy. Philos Mag, 2014, 94(18): 1992 doi: 10.1080/14786435.2014.903342
|
[14] |
Favre J, Fabrègue D, Yamanaka K, et al. Modeling dynamic recrystallization of L-605 cobalt superalloy. Mater Sci Eng A, 2016, 653: 84 doi: 10.1016/j.msea.2015.12.003
|
[15] |
Weeton J W, Signorelli R A. An Investigation of Lamellar Structures and Minor Phase in Eleven Cobalt-Base Alloys Before and After Heat Treatment. Washington, 1954
|
[16] |
Mani A, Salinas R, Lopez H F. Deformation induced FCC to HCP transformation in a Co-27Cr-5Mo-0.05C alloy. Mater Sci Eng A, 2011, 528(7-8): 3037 doi: 10.1016/j.msea.2010.12.024
|
[17] |
Vacchieri E, Costa A, Roncallo G, et al. Service induced fcc→ hcp martensitic transformation in a Co-based superalloy. Mater Sci Technol, 2017, 33(9): 1100 doi: 10.1080/02670836.2016.1273866
|
[18] |
Koizumi Y, Suzuki S, Yamanaka K, et al. Strain-induced martensitic transformation near twin boundaries in a biomedical Co-Cr-Mo alloy with negative stacking fault energy. Acta Mater, 2013, 61(5): 1648 doi: 10.1016/j.actamat.2012.11.041
|
[19] |
Bensona M L, Liaw P K, Saleh T A, et al. Deformation-induced phase development in a cobalt-based superalloy during monotonic and cyclic deformation. Phys B, 2006, 385-386: 523 doi: 10.1016/j.physb.2006.05.262
|
[20] |
Tawancy H M, Ishwar V R, Lewis B E. On the fcc-hcp transformation in a cobalt-base superalloy (Haynes alloy No. 25). J Mater Sci Lett, 1986, 5: 337 doi: 10.1007/BF01748098
|
[21] |
Saldivar G, Mani M, Salinas R, et al. Effect of solution treatments on the fcc/hcp isothermal martensitic transformation in Co-27Cr-5Mo-0.05C aged at 800℃. Scripta Mater, 1999, 40(6): 717 doi: 10.1016/S1359-6462(98)00489-8
|
[22] |
江河, 董建新, 張麥倉, 等. 700℃超超臨界鍋爐材料617B合金鑄態組織及均勻化工藝. 北京科技大學學報, 2014, 36(6): 795 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201406013.htm
Jiang H, Dong J X, Zhang M C, et al. Microstructure and homogenization of as-cast 617B alloy for 700℃ ultra-supercritical boilers. J Univ Sci Technol Beijing, 2014, 36(6): 795 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201406013.htm
|