<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 2
Feb.  2020
Turn off MathJax
Article Contents
ZHANG Yu-zhen, LI Qing, ZHANG Wei-cun, YANG Yu-hang. Survey of multi-model adaptive control theory and its applications[J]. Chinese Journal of Engineering, 2020, 42(2): 135-143. doi: 10.13374/j.issn2095-9389.2019.02.25.006
Citation: ZHANG Yu-zhen, LI Qing, ZHANG Wei-cun, YANG Yu-hang. Survey of multi-model adaptive control theory and its applications[J]. Chinese Journal of Engineering, 2020, 42(2): 135-143. doi: 10.13374/j.issn2095-9389.2019.02.25.006

Survey of multi-model adaptive control theory and its applications

doi: 10.13374/j.issn2095-9389.2019.02.25.006
More Information
  • Multi-model adaptive control, as an improved method of classical adaptive control, can effectively solve the control performance issues for the complex systems with large parameter uncertainties. It has attracted increasing attention from scholars, and a vast array of research results have been achieved in theory and practice. According to the different synthesis methods of multiple local controllers corresponding to the multiple local models, the multi-model adaptive control scheme can be divided into different categories. This paper provides a survey of weighted multi-model adaptive control (WMMAC). The basic idea of the WMMAC is to adopt the method of “divide and conquer”; multiple local models and corresponding multiple local controllers are established offline, and the control outputs of local controllers are integrated online, such that the global control law can be formed. The WMMAC is a promising method to achieve strong robustness and a self-adaptive ability for control systems. First, we presented the development process and the main problems of the WMMAC. Then, the research status of control systems and the latest progress were shown, including model set construction and weighting algorithm design. To improve the rationality of model set construction, WMMACs with self-tuning model and even a dynamic model set have been developed. Meanwhile, to reduce the calculation burden, a new weighting algorithm has been designed, which is based on the model output errors of the multi-model adaptive control system. Especially for system stability analysis, which has always been a recognized problem in the WMMAC system, some research results have been obtained. The proof of system stability in the general sense has been given preliminarily by introducing the theory of virtual equivalent system. This paper gave a review of WMMAC in the order of the variation on the structure, the development of algorithms and its applications. Furthermore, the main problems in the control system were analyzed, and some potential research directions, which are the difficulties and emphases of future research including model set, weight calculation, disturbance rejection, stability, were pointed out.

     

  • loading
  • [1]
    Fekri S, Athans M, Pascoal A. Issues, progress and new results in robust adaptive control. Int J Adapt Control Signal Process, 2006, 20(10): 519 doi: 10.1002/acs.912
    [2]
    Ioannou P A. CDC semi-plenary: “Robust adaptive control: The search for the Holy Grail” // Proceedings of 2018 47th IEEE Conference on Decision and Control. Cancun, 2008: 12
    [3]
    Sun Z D, Ge S S. Switched Linear Systems: Control and Design. London: Springer, 2005
    [4]
    Sun Z D, Ge S S. Stability Theory of Switched Dynamical Systems. London: Springer, 2011
    [5]
    王修巖, 葛平, 孫一康, 等. 基于多模型自適應控制方法的FGC控制. 北京科技大學學報, 2004, 26(1):99 doi: 10.3321/j.issn:1001-053X.2004.01.026

    Wang X Y, Ge P, Sun Y K, et al. Control of FGC system based on multi-model adaptive control method. J Univ Sci Technol Beijing, 2004, 26(1): 99 doi: 10.3321/j.issn:1001-053X.2004.01.026
    [6]
    費樹岷, 周強. 切換系統穩定性研究綜述. 機械制造與自動化, 2014, 43(1):1 doi: 10.3969/j.issn.1671-5276.2014.01.001

    Fei S M, Zhou Q. Advances on stability of switched systems. Mach Build Autom, 2014, 43(1): 1 doi: 10.3969/j.issn.1671-5276.2014.01.001
    [7]
    Magill D. Optimal adaptive estimation of sampled stochastic processes. IEEE Trans Autom Control, 1965, 10(4): 434 doi: 10.1109/TAC.1965.1098191
    [8]
    Lainiotis D G. Partitioning: A unifying framework for adaptive systems-I: Estimation. Proc IEEE, 1976, 64(8): 1126 doi: 10.1109/PROC.1976.10284
    [9]
    Lainiotis D G. Partitioning: A unifying framework for adaptive systems-II: Control. Proc IEEE, 1976, 64(8): 1182 doi: 10.1109/PROC.1976.10289
    [10]
    Athans M, Castanon D, Dunn K, et al. The stochastic control of the F-8C aircraft using a multiple model adaptive control (MMAC) method-Part I: Equilibrium flight. IEEE Trans Autom Control, 1977, 22(5): 768 doi: 10.1109/TAC.1977.1101599
    [11]
    Lane D W, Maybeck P S. Multiple model adaptive estimation applied to the LAMBDA URV for failure detection and identification // Proceedings of 1994 33rd IEEE Conference on Decision and Control. Lake Buena Vista, 1994: 678
    [12]
    Yu C, Roy R J, Kaufman H, et al. Multiple-model adaptive predictive control of mean arterial pressure and cardiac output. IEEE Trans Biomed Eng, 1992, 39(8): 765 doi: 10.1109/10.148385
    [13]
    Moose R L, Vanlandingham H F, McCabe D H. Modeling and estimation for tracking maneuvering targets. IEEE Trans Aerosp Electron Syst, 1979, 15(3): 448
    [14]
    Li X R, Bar-Shalom Y. Design of an interacting multiple model algorithm for air traffic control tracking. IEEE Trans Control Syst Technol, 1993, 1(3): 186 doi: 10.1109/87.251886
    [15]
    Badr A, Binder Z, Rey D. Application of tracking multimodel control to a non-linear thermal process. Int J Syst Sci, 1990, 21(9): 1795 doi: 10.1080/00207729008910499
    [16]
    Badr A, Binder Z, Rey D. Weighted multi-model control. Int J Syst Sci, 1992, 23(1): 145 doi: 10.1080/00207729208949196
    [17]
    Nagib G, Gharieb W, Binder Z. Qualitative multi-model control using a learning approach. Int J Syst Sci, 1992, 23(6): 855 doi: 10.1080/00207729208949254
    [18]
    Aly A, Badr A, Binder Z. Multi-model control of MIMO systems: location and control algorithms. Int J Syst Sci, 1988, 19(9): 1687 doi: 10.1080/00207728808964069
    [19]
    Fekri S, Athans M, Pascoal A. Robust multiple model adaptive control (RMMAC): a case study. Int J Adapt Control Signal Process, 2007, 21(1): 1 doi: 10.1002/acs.944
    [20]
    Aguiar A P, Hassani V, Pascoal A M, et al. Identification and convergence analysis of a class of continuous-time multiple-model adaptive estimators. IFAC Proc Vol, 2008, 41(2): 8605 doi: 10.3182/20080706-5-KR-1001.01455
    [21]
    Hassani V, Aguiar A P, Pascoal A M, et al. A performance based model-set design strategy for multiple model adaptive estimation // 2009 European Control Conference (ECC). Budapest, 2009: 4516
    [22]
    Hassani V, Aguiar A P, Athans M, et al. Multiple model adaptive estimation and model identification usign a minimum energy criterion // 2009 American Control Conference. Missouri, 2009: 518
    [23]
    Hassani V, Athans M, Pascoal A M. An application of the RMMAC methodology to an unstable plant // 2009 17th Mediterranean Conference on Control and Automation. Thessaloniki, Greece, 2009: 37
    [24]
    Kuipers M, Ioannou P. Multiple model adaptive control with mixing. IEEE Trans Autom Control, 2010, 55(8): 1822 doi: 10.1109/TAC.2010.2042345
    [25]
    Baldi S, Ioannou P, Mosca E. Multiple model adaptive mixing control: the discrete-time case. IEEE Trans Autom Control, 2012, 57(4): 1040 doi: 10.1109/TAC.2011.2169620
    [26]
    何文光. 一類不確定參數系統的多模型自適應控制. 自動化學報, 1988, 14(3):191

    He W G. Multiple model adaptive control for a category of systems with uncertain parameters. Acta Autom Sin, 1988, 14(3): 191
    [27]
    王偉, 李曉理. 多模型自適應控制. 北京: 科學出版社, 2001

    Wang W, Li X L. Multiple Model Adaptive Control. Beijing: Science Press, 2001
    [28]
    鄭益慧, 王昕, 李少遠, 等. 隨機系統的多模型直接自適應解耦控制器. 自動化學報, 2010, 36(9):1295

    Zheng Y H, Wang X, Li S Y, et al. Multiple models direct adaptive decoupling controller for a stochastic system. Acta Autom Sin, 2010, 36(9): 1295
    [29]
    Dong Z K, Wang X, Wang X B, et al. Application of weighted multiple models adaptive controller in the plate cooling process. Acta Autom Sin, 2010, 36(8): 1144 doi: 10.3724/SP.J.1004.2010.01144
    [30]
    王世虎, 沈炯, 李益國. 多模型控制方法及其研究進展. 工業儀表與自動化裝置, 2008(1):13 doi: 10.3969/j.issn.1000-0682.2008.01.004

    Wang S H, Shen J, Li Y G. Multi-model control and its study progress. Ind Instrum Autom, 2008(1): 13 doi: 10.3969/j.issn.1000-0682.2008.01.004
    [31]
    胡國龍, 孫優賢. 多模型控制方法的研究進展及其應用現狀. 信息與控制, 2004, 33(1):72 doi: 10.3969/j.issn.1002-0411.2004.01.016

    Hu G L, Sun Y X. Advances and application of multiple model control method. Inform Control, 2004, 33(1): 72 doi: 10.3969/j.issn.1002-0411.2004.01.016
    [32]
    袁向陽, 施頌椒. 基于多模型的自適應控制研究進展. 上海交通大學學報, 1999, 33(5):626 doi: 10.3321/j.issn:1006-2467.1999.05.033

    Yuan X Y, Shi S J. Survey of multiple model based adaptive control. J Shanghai Jiaotong Univ, 1999, 33(5): 626 doi: 10.3321/j.issn:1006-2467.1999.05.033
    [33]
    Narendra K S, Han Z. The changing face of adaptive control: the use of multiple models. Annu Rev Control, 2011, 35(1): 1 doi: 10.1016/j.arcontrol.2011.03.010
    [34]
    Baram Y. Information, Consistent Estimation and Dynamic System Identification [Dissertation]. Massachusetts: Massachusetts Institute of Technology, 1976
    [35]
    Baram Y, Sandell N. An information theoretic approach to dynamical systems modeling and identification. IEEE Trans Autom Control, 1978, 23(1): 61 doi: 10.1109/TAC.1978.1101690
    [36]
    Baram Y, Sandell N. Consistent estimation on finite parameter sets with application to linear systems identification. IEEE Trans Autom Control, 1978, 23(3): 451 doi: 10.1109/TAC.1978.1101745
    [37]
    Kehagias A. Convergence properties of the Lainiotis partition algorithm. Control Comput, 1991, 19(1): 1
    [38]
    Zhou H, Narendra K S. New concepts in adaptive control using multiple models. IEEE Trans Autom Control, 2012, 57(1): 78 doi: 10.1109/TAC.2011.2152470
    [39]
    Chen W, Sun J, Chen C, et al. Adaptive control of a class of nonlinear systems using multiple models with smooth controller. Int J Robust Nonlinear Control, 2015, 25(6): 865 doi: 10.1002/rnc.3113
    [40]
    Zhang W C. Stable weighted multiple model adaptive control: discrete-time stochastic plant. Int J Adapt Control Signal Process, 2013, 27(7): 562 doi: 10.1002/acs.2328
    [41]
    Zhang W C. Further results on stable weighted multiple model adaptive control: discrete-time stochastic plant. Int J Adapt Control Signal Process, 2015, 29(12): 1497 doi: 10.1002/acs.2555
    [42]
    張維存. 參數不確定離散隨機系統的加權多模型自適應控制. 自動化學報, 2015, 41(3):541

    Zhang W C. Weighted multiple model adaptive control of discrete-time stochastic system with uncertain parameters. Acta Autom Sin, 2015, 41(3): 541
    [43]
    張維存. 加權多模型自適應控制的穩定性. 控制理論與應用, 2012, 29(12):1657

    Zhang W C. Stability of weighted multiple model adaptive control. Control Theory Appl, 2012, 29(12): 1657
    [44]
    張維存, 劉冀偉, 胡廣大. 魯棒多模型自適應控制系統的穩定性. 自動化學報, 2015, 41(1):113

    Zhang W C, Liu J W, Hu G D. Stability analysis of robust multiple model adaptive control systems. Acta Autom Sin, 2015, 41(1): 113
    [45]
    張錦江, 范松濤, 張志方, 等. 天宮一號基于控制力矩陀螺的智能多模自適應姿態控制系統設計與驗證. 中國科學: 技術科學, 2014, 44(2):131

    Zhang J J, Fan S T, Zhang Z F, et al. Design and verification of intelligent multi-model adaptive control system of Tiangong-1 based on control moment gyros. Sci Sin Tech, 2014, 44(2): 131
    [46]
    Chen L J, Narendra K S. Nonlinear adaptive control using neural networks and multiple models. Automatica, 2001, 37(8): 1245 doi: 10.1016/S0005-1098(01)00072-3
    [47]
    Fu Y, Chai T Y. Nonlinear multivariable adaptive control using multiple models and neural networks. Automatica, 2007, 43(6): 1101 doi: 10.1016/j.automatica.2006.12.010
    [48]
    Fu Y, Chai T Y. Indirect self-tuning control using multiple models for non-affine nonlinear systems. Int J Control, 2011, 84(6): 1031 doi: 10.1080/00207179.2011.588960
    [49]
    黃淼, 王昕, 王振雷. 非線性零階接近有界多模型神經網絡自適應控制器. 控制與決策, 2013, 28(9):1315

    Huang M, Wang X, Wang Z L. Nonlinear adaptive controller using multiple models and neural networks based on zero order proximity boundedness. Control Decision, 2013, 28(9): 1315
    [50]
    Huang M, Wang X, Wang Z L. Multiple model adaptive control for a class of linear-bounded nonlinear systems. IEEE Trans Autom Control, 2015, 60(1): 271 doi: 10.1109/TAC.2014.2323161
    [51]
    Li X L, Jia C, Liu D X, et al. Nonlinear adaptive control using multiple models and dynamic neural networks. Neurocomputing, 2014, 36: 190
    [52]
    Li X L, Zhang X F, Jia C, et al. Multi-model adaptive control based on fuzzy neural networks. J Intell Fuzzy Syst, 2014, 27(2): 965
    [53]
    Li X L, Jia C, Wang K, et al. Trajectory tracking of nonlinear system using multiple series-parallel dynamic neural networks. Neurocomputing, 2015, 168: 1 doi: 10.1016/j.neucom.2015.06.024
    [54]
    李俊領, 楊光紅. 自適應容錯控制的發展與展望. 控制與決策, 2014, 29(11):1921

    Li J L, Yang G H. Development and prospect of adaptive fault-tolerant control. Control Decision, 2014, 29(11): 1921
    [55]
    雷虎民, 邵雷, 楊遵. 多模型建模與控制的理論和方法. 北京: 國防工業出版社, 2017

    Lei H M, Shao L, Yang Z. Theory and Method for Multiple-Model Modeling and Control. Beijing: National Defense Industry Press, 2017
    [56]
    Guo Y Y, Jiang B. Multiple model-based adaptive reconfiguration control for actuator fault. Acta Autom Sin, 2009, 35(11): 1452 doi: 10.3724/SP.J.1004.2009.01452
    [57]
    Tan C, Tao G, Qi R Y. Multiple-model based adaptive actuator failure compensation control scheme. J Nanjing Univ Aeron Astron, 2011, 43(增刊): 104

    譚暢, 陶鋼, 齊瑞云. 多模型直接自適應執行器故障補償控制系統. 南京航空航天大學學報, 2011, 43(增刊):104)
    [58]
    Boskovic J D, Mehra R K. Multiple-model adaptive flight control scheme for accommodation of actuator failures. J Guid Control Dyn, 2002, 25(4): 712 doi: 10.2514/2.4938
    [59]
    錢默抒, 姜斌, 楊浩. 攻擊型無人機切換控制系統容錯算法研究. 控制工程, 2012, 19(2):346 doi: 10.3969/j.issn.1671-7848.2012.02.041

    Qian M S, Jiang B, Yang H. Study on fault-tolerant control algorithm of switched system for attack UAV. Control Eng China, 2012, 19(2): 346 doi: 10.3969/j.issn.1671-7848.2012.02.041
    [60]
    Tan C, Tao G, Yang H. Adaptive actuator failure compensation using multiple-model switching // 2014 European Control Conference (ECC). Strasbourg, 2014: 630
    [61]
    Chen F Y, Cai L, Jiang B, et al. Direct self-repairing control for a helicopter via quantum multi-model and disturbance observer. Int J Syst Sci, 2016, 47(3): 533 doi: 10.1080/00207721.2014.891669
    [62]
    Mahdianfar H, Ozgoli S, Momeni H R. Robust multiple model adaptive control: Modified using v-gap metric. Int J Robust Nonlinear Control, 2011, 21(18): 2027 doi: 10.1002/rnc.1673
    [63]
    翟軍勇, 費樹岷. 基于動態模型庫的多模型切換控制. 控制理論與應用, 2009, 26(12):1410

    Zhai J Y, Fei S M. Multiple-model switching control based on dynamic model bank. Control Theory Appl, 2009, 26(12): 1410
    [64]
    潘天紅, 薛振框, 李少遠. 基于減法聚類的多模型在線辨識算法. 自動化學報, 2009, 35(2):220

    Pan T H, Xue Z K, Li S Y. An online multi-model identification algorithm based on subtractive clustering. Acta Autom Sin, 2009, 35(2): 220
    [65]
    邵雷, 雷虎民, 趙宗寶. 一種基于滑動庫的多模型在線建模方法. 控制與決策, 2010, 25(1):121

    Shao L, Lei H M, Zhao Z B. Moving bank based online multiple-model modeling method. Control Decision, 2010, 25(1): 121
    [66]
    黃淼, 王昕, 王振雷. 一類非線性系統的基于時間序列的多模型自適應控制. 自動化學報, 2013, 39(5):581

    Huang M, Wang X, Wang Z L. Multiple models adaptive control based on time series for a class of nonlinear systems. Acta Autom Sin, 2013, 39(5): 581
    [67]
    叢秋梅, 苑明哲, 柴天佑, 等. 帶有工況中心修正的多模型在線建模. 控制理論與應用, 2013, 30(6):773 doi: 10.7641/CTA.2013.20695

    Cong Q M, Yuan M Z, Chai T Y, et al. Online modeling for multi-model by adjusting the centers of operating ranges. Control Theory Appl, 2013, 30(6): 773 doi: 10.7641/CTA.2013.20695
    [68]
    李慶良, 雷虎民, 邵雷, 等. 一種基于差分進化算法的多模型建模方法. 控制與決策, 2010, 25(12):1866

    Li Q L, Lei H M, Shao L, et al. Multiple-model modeling method based on differential evolution algorithm. Control Decision, 2010, 25(12): 1866
    [69]
    史善孟, 王昕, 王振雷. 動態優化雙估計器的多模型自適應混合控制. 控制理論與應用, 2019, 36(4):596 doi: 10.7641/CTA.2018.70906

    Shi S M, Wang X, Wang Z L. Dynamically optimized multiple model adaptive mixing control of dual estimators. Control Theory Appl, 2019, 36(4): 596 doi: 10.7641/CTA.2018.70906
    [70]
    陳山, 潘天紅. 多模型系統加權函數的全局優化算法/ /第31屆中國控制會議. 合肥, 2012: 7052

    Chen S, Pan T H. Global optimized algorithm for weighted function of multi-model system // Proceedings of the 31st Chinese Control Conference. Hefei, 2012: 7052
    [71]
    陳登乾, 王昕, 王振雷. 多模型混合H∞型魯棒控制. 控制理論與應用, 2018, 35(8):1074 doi: 10.7641/CTA.2018.60718

    Chen D Q, Wang X, Wang Z L. Multi-models mixing H-infinity theory robust control. Control Theory Appl, 2018, 35(8): 1074 doi: 10.7641/CTA.2018.60718
    [72]
    Hassani V, Hespanha J P, Athans M, et al. Stability analysis of robust multiple model adaptive control. IFAC Proc Vol, 2011, 44(1): 350 doi: 10.3182/20110828-6-IT-1002.01194
    [73]
    Zhang W C. On the stability and convergence of self-tuning control—virtual equivalent system approach. Int J Control, 2010, 83(5): 879 doi: 10.1080/00207170903487421
    [74]
    Zhang W C, Chu T G, Wang L. A new theoretical framework for self-tuning control. Int J Inform Technol, 2005, 11(11): 123
    [75]
    Zhang W C. The convergence of parameter estimates is not necessary for a general self-tuning control system—stochastic plant // Proceedings of 48th IEEE Conference on Decision and Control. Shanghai, 2009: 3489
    [76]
    Zhang W, Li X L, Choi J Y. A unified analysis of switching multiple model adaptive control-Virtual equivalent system approach. IFAC Proc Vol, 2008, 41(2): 14403 doi: 10.3182/20080706-5-KR-1001.02440
    [77]
    張玉振, 李擎, 張維存. 含有自校正模型的加權多模型自適應控制. 工程科學學報, 2018, 40(11):1389

    Zhang Y Z, Li Q, Zhang W C. Weighted multiple model adaptive control with self-tuning model. Chin J Eng, 2018, 40(11): 1389
    [78]
    Vinnicombe G. Frequency domain uncertainty and the graph topology. IEEE Trans Autom Control, 1993, 38(9): 1371 doi: 10.1109/9.237648
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(4)

    Article views (2663) PDF downloads(203) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频