<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 2
Feb.  2020
Turn off MathJax
Article Contents
YI Hao-yu, CHEN Si-han, WANG Min, LIANG Tian, MA Ying-che. Effects of Cr and Si on the microstructure and solidification path of austenitic stainless steel[J]. Chinese Journal of Engineering, 2020, 42(2): 179-185. doi: 10.13374/j.issn2095-9389.2019.02.24.003
Citation: YI Hao-yu, CHEN Si-han, WANG Min, LIANG Tian, MA Ying-che. Effects of Cr and Si on the microstructure and solidification path of austenitic stainless steel[J]. Chinese Journal of Engineering, 2020, 42(2): 179-185. doi: 10.13374/j.issn2095-9389.2019.02.24.003

Effects of Cr and Si on the microstructure and solidification path of austenitic stainless steel

doi: 10.13374/j.issn2095-9389.2019.02.24.003
More Information
  • Corresponding author: E-mail: minwang@imr.ac.cn
  • Received Date: 2019-02-24
  • Publish Date: 2020-02-01
  • The lead-cooled fast reactor (LFR), which features advanced technical maturity and enhanced safety, is an important part of the fourth-generation nuclear power system of China. The superior safety of the LFR results from the choice of a relatively inert coolant, the lead or lead-bismuth eutectic (LBE), which can be rather corrosive to common metallic structural materials. Furthermore, there is basically no cladding material available for the LFR. Austenitic stainless steels feature a combination of excellent corrosion resistance, proper strength, and good workability, and materials such as 316Ti and 15-15Ti, which have been used in the sodium-cooled fast reactor (SFR), are viewed as promising candidate materials for LFR cladding applications. Elements of Cr and Si have been found capable of improving the corrosion resistance of 316Ti and 15-15Ti to LBE. However, as ferrite-forming elements, the influences of Cr and Si on the microstructural stability of 316Ti and 15-15Ti are still unclear. In this work, 316Ti-based materials with various Cr and Si contents were studied through thermodynamic simulation and microstructural characterization. Specifically, the equilibrium phase constitutions of the austenitic stainless steels were investigated by thermodynamic simulation using Thermo-Calc. The solidification microstructures and precipitates of Cr- and Si-bearing austenitic stainless steels were studied by optical microscopy (OM), scanning electronic microscopy (SEM), electronic differential system (EDS), and X-ray diffraction (XRD). The results show that Cr and Si can decrease the solidus and liquidus temperatures of alloys and induce the precipitation of δ-phase. For alloy 18Cr?2.0Si?15Ni, the maximum contents of Cr and Si are determined to be no more than 18.8% and 2.55%, respectively, which hinders δ-phase precipitation. In the ingot of 20Cr?2.0Si, δ-phase is found to be located within dendrites in a skeleton morphology, with a volume fraction of 8.6%, whereas in the ingot of 18Cr?2.5Si, δ-phase precipitates between dendrites, with a volume fraction of 3.4%. Moreover, this work also evaluates two kinds of austenitic stainless steel solidification path criteria.

     

  • loading
  • [1]
    程學群, 李曉剛, 杜翠薇. 316L不銹鋼在含Cl-高溫醋酸溶液中的電化學行為. 金屬學報, 2006, 42(3):299 doi: 10.3321/j.issn:0412-1961.2006.03.013

    Cheng X Q, Li X G, Du C W. Electrochemical behavior of 316L stainless steel in Cl- containing acetic acid solution under high temperature. Acta Metall Sin, 2006, 42(3): 299 doi: 10.3321/j.issn:0412-1961.2006.03.013
    [2]
    柳曾典. 常用鉻鎳奧氏體不銹鋼的選用. 石油化工設備技術, 1999, 20(3):39

    Liu Z D. Common selection of Cr-Ni austenitic stainless steel. Petro-Chem Equip Technol, 1999, 20(3): 39
    [3]
    Allen T R, Crawford D C. Lead-cooled fast reactor systems and the fuels and materials challenges. Sci Technol Nucl Ins, 2007, 2007: 97486
    [4]
    Barbier F, Benamati G, Fazio C, et al. Compatibility tests of steels in flowing liquid lead-bismuth. J Nucl Mater, 2001, 295(2-3): 149 doi: 10.1016/S0022-3115(01)00570-0
    [5]
    Lambrinou K, Charalampopoulou E, Van der Donck T, et al. Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 ℃. J Nucl Mater, 2017, 490: 9 doi: 10.1016/j.jnucmat.2017.04.004
    [6]
    Johnson A L, Parsons D, Manzerova J, et al. Spectroscopic and microscopic investigation of the corrosion of 316/316L stainless steel by lead-bismuth eutectic (LBE) at elevated temperatures: importance of surface preparation. J Nucl Mater, 2004, 328(2-3): 88 doi: 10.1016/j.jnucmat.2004.03.006
    [7]
    Kurata Y, Futakawa M. Excellent corrosion resistance of 18Cr–20Ni–5Si steel in liquid Pb–Bi. J Nucl Mater, 2004, 325: 217 doi: 10.1016/j.jnucmat.2003.12.009
    [8]
    Kondo M, Takahashi M. Corrosion resistance of Si- and Al-rich steels in flowing lead–bismuth. J Nucl Mater, 2006, 356(1-3): 203 doi: 10.1016/j.jnucmat.2006.05.019
    [9]
    Wang Q C, Ren Y B, Yao C F, et al. Residual ferrite and relationship between composition and microstructure in high-nitrogen austenitic stainless steels. Metall Mater Trans A, 2015, 46(12): 5537 doi: 10.1007/s11661-015-3160-5
    [10]
    舒瑋, 李俊, 廉曉潔, 等. 熱處理對奧氏體不銹鋼00Cr24Ni13鑄坯高溫熱塑性的影響. 工程科學學報, 2015, 37(2):190

    Shu W, Li J, Lian X J, et al. Effect of heat treatment on the high temperature ductility of 00Cr24Ni13 austenitic stainless steel casting billets. Chin J Eng, 2015, 37(2): 190
    [11]
    Bai G S, Lu S P, Li D Z, et al. Intergranular corrosion behavior associated with delta-ferrite transformation of Ti-modified Super304H austenitic stainless steel. Corros Sci, 2015, 90: 347 doi: 10.1016/j.corsci.2014.10.031
    [12]
    Okane T, Umeda T. Eutectic growth of unidirectionally solidified Fe-Cr-Ni alloy. ISIJ Int, 1998, 38(5): 454 doi: 10.2355/isijinternational.38.454
    [13]
    Ferrandini P L, Rios C T, Dutra A T, et al. Solute segregation and microstructure of directionally solidified austenitic stainless steel. Mater Sci Eng A, 2006, 435-436: 139 doi: 10.1016/j.msea.2006.07.024
    [14]
    Brooks J A, Williams J C, Thompson A W. STEM analysis of primary austenite solidified stainless steel welds. Metall Trans A, 1983, 14(1): 23 doi: 10.1007/BF02643733
    [15]
    Fu J W, Sun J J, Cen X, et al. Growth behavior and orientation relationships in AISI 304 stainless steel during directional solidification. Mater Charact, 2018, 139: 241 doi: 10.1016/j.matchar.2018.03.015
    [16]
    Song Y, Baker T N, McPherson N A. A study of precipitation in as-welded 316LN plate using 316L/317L weld metal. Mater Sci Eng A, 1996, 212(2): 228 doi: 10.1016/0921-5093(96)10199-4
    [17]
    Padilha A F, Escriba D M, Materna-Morris E, et al. Precipitation in AISI 316L(N) during creep tests at 550 and 600 C up to 10 years. J Nucl Mater, 2007, 362(1): 132 doi: 10.1016/j.jnucmat.2006.12.027
    [18]
    Gill T P S, Shankar V, Pujar M G, et al. Effect of composition on the transformation of δ-ferrite to σ in type 316 stainless steel weld metals. Scripta Metall Mater, 1995, 32(10): 1595 doi: 10.1016/0956-716X(95)00242-N
    [19]
    孫紅英, 周張健, 王曼, 等. 改進310奧氏體不銹鋼長期時效后的組織與性能. 工程科學學報, 2015, 37(5):600

    Sun H Y, Zhou Z J, Wang M, et al. Microstructures and mechanical properties of a new 310 austenitic stainless steel during long term aging. Chin J Eng, 2015, 37(5): 600
    [20]
    Mataya M C, Nilsson E R, Brown E L, et al. Hot working and recrystallization of as-cast 317L. Metall Mater Trans A, 2003, 34(12): 3021 doi: 10.1007/s11661-003-0201-2
    [21]
    Di Schino A, Mecozzi M G, Barteri M, et al. Solidification mode and residual ferrite in low-Ni austenitic stainless steels. J Mater Sci, 2000, 35(2): 375 doi: 10.1023/A:1004774130483
    [22]
    Fu J W, Yang Y S, Guo J J, et al. Formation of a two-phase microstructure in Fe–Cr–Ni alloy during directional solidification. J Cryst Growth, 2008, 311(1): 132 doi: 10.1016/j.jcrysgro.2008.10.021
    [23]
    Hammer O, Svensson U. Solidification and Casting of Metals. London: The Metals Society, 1979: 401
    [24]
    Rajasekhar K, Harendranath C S, Raman R, et al. Microstructural evolution during solidification of austenitic stainless steel weld metals: A color metallographic and electron microprobe analysis study. Mater Charact, 1997, 38(2): 53 doi: 10.1016/S1044-5803(97)80024-1
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article views (1811) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频