Citation: | YI Hao-yu, CHEN Si-han, WANG Min, LIANG Tian, MA Ying-che. Effects of Cr and Si on the microstructure and solidification path of austenitic stainless steel[J]. Chinese Journal of Engineering, 2020, 42(2): 179-185. doi: 10.13374/j.issn2095-9389.2019.02.24.003 |
[1] |
程學群, 李曉剛, 杜翠薇. 316L不銹鋼在含Cl-高溫醋酸溶液中的電化學行為. 金屬學報, 2006, 42(3):299 doi: 10.3321/j.issn:0412-1961.2006.03.013
Cheng X Q, Li X G, Du C W. Electrochemical behavior of 316L stainless steel in Cl- containing acetic acid solution under high temperature. Acta Metall Sin, 2006, 42(3): 299 doi: 10.3321/j.issn:0412-1961.2006.03.013
|
[2] |
柳曾典. 常用鉻鎳奧氏體不銹鋼的選用. 石油化工設備技術, 1999, 20(3):39
Liu Z D. Common selection of Cr-Ni austenitic stainless steel. Petro-Chem Equip Technol, 1999, 20(3): 39
|
[3] |
Allen T R, Crawford D C. Lead-cooled fast reactor systems and the fuels and materials challenges. Sci Technol Nucl Ins, 2007, 2007: 97486
|
[4] |
Barbier F, Benamati G, Fazio C, et al. Compatibility tests of steels in flowing liquid lead-bismuth. J Nucl Mater, 2001, 295(2-3): 149 doi: 10.1016/S0022-3115(01)00570-0
|
[5] |
Lambrinou K, Charalampopoulou E, Van der Donck T, et al. Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 ℃. J Nucl Mater, 2017, 490: 9 doi: 10.1016/j.jnucmat.2017.04.004
|
[6] |
Johnson A L, Parsons D, Manzerova J, et al. Spectroscopic and microscopic investigation of the corrosion of 316/316L stainless steel by lead-bismuth eutectic (LBE) at elevated temperatures: importance of surface preparation. J Nucl Mater, 2004, 328(2-3): 88 doi: 10.1016/j.jnucmat.2004.03.006
|
[7] |
Kurata Y, Futakawa M. Excellent corrosion resistance of 18Cr–20Ni–5Si steel in liquid Pb–Bi. J Nucl Mater, 2004, 325: 217 doi: 10.1016/j.jnucmat.2003.12.009
|
[8] |
Kondo M, Takahashi M. Corrosion resistance of Si- and Al-rich steels in flowing lead–bismuth. J Nucl Mater, 2006, 356(1-3): 203 doi: 10.1016/j.jnucmat.2006.05.019
|
[9] |
Wang Q C, Ren Y B, Yao C F, et al. Residual ferrite and relationship between composition and microstructure in high-nitrogen austenitic stainless steels. Metall Mater Trans A, 2015, 46(12): 5537 doi: 10.1007/s11661-015-3160-5
|
[10] |
舒瑋, 李俊, 廉曉潔, 等. 熱處理對奧氏體不銹鋼00Cr24Ni13鑄坯高溫熱塑性的影響. 工程科學學報, 2015, 37(2):190
Shu W, Li J, Lian X J, et al. Effect of heat treatment on the high temperature ductility of 00Cr24Ni13 austenitic stainless steel casting billets. Chin J Eng, 2015, 37(2): 190
|
[11] |
Bai G S, Lu S P, Li D Z, et al. Intergranular corrosion behavior associated with delta-ferrite transformation of Ti-modified Super304H austenitic stainless steel. Corros Sci, 2015, 90: 347 doi: 10.1016/j.corsci.2014.10.031
|
[12] |
Okane T, Umeda T. Eutectic growth of unidirectionally solidified Fe-Cr-Ni alloy. ISIJ Int, 1998, 38(5): 454 doi: 10.2355/isijinternational.38.454
|
[13] |
Ferrandini P L, Rios C T, Dutra A T, et al. Solute segregation and microstructure of directionally solidified austenitic stainless steel. Mater Sci Eng A, 2006, 435-436: 139 doi: 10.1016/j.msea.2006.07.024
|
[14] |
Brooks J A, Williams J C, Thompson A W. STEM analysis of primary austenite solidified stainless steel welds. Metall Trans A, 1983, 14(1): 23 doi: 10.1007/BF02643733
|
[15] |
Fu J W, Sun J J, Cen X, et al. Growth behavior and orientation relationships in AISI 304 stainless steel during directional solidification. Mater Charact, 2018, 139: 241 doi: 10.1016/j.matchar.2018.03.015
|
[16] |
Song Y, Baker T N, McPherson N A. A study of precipitation in as-welded 316LN plate using 316L/317L weld metal. Mater Sci Eng A, 1996, 212(2): 228 doi: 10.1016/0921-5093(96)10199-4
|
[17] |
Padilha A F, Escriba D M, Materna-Morris E, et al. Precipitation in AISI 316L(N) during creep tests at 550 and 600 C up to 10 years. J Nucl Mater, 2007, 362(1): 132 doi: 10.1016/j.jnucmat.2006.12.027
|
[18] |
Gill T P S, Shankar V, Pujar M G, et al. Effect of composition on the transformation of δ-ferrite to σ in type 316 stainless steel weld metals. Scripta Metall Mater, 1995, 32(10): 1595 doi: 10.1016/0956-716X(95)00242-N
|
[19] |
孫紅英, 周張健, 王曼, 等. 改進310奧氏體不銹鋼長期時效后的組織與性能. 工程科學學報, 2015, 37(5):600
Sun H Y, Zhou Z J, Wang M, et al. Microstructures and mechanical properties of a new 310 austenitic stainless steel during long term aging. Chin J Eng, 2015, 37(5): 600
|
[20] |
Mataya M C, Nilsson E R, Brown E L, et al. Hot working and recrystallization of as-cast 317L. Metall Mater Trans A, 2003, 34(12): 3021 doi: 10.1007/s11661-003-0201-2
|
[21] |
Di Schino A, Mecozzi M G, Barteri M, et al. Solidification mode and residual ferrite in low-Ni austenitic stainless steels. J Mater Sci, 2000, 35(2): 375 doi: 10.1023/A:1004774130483
|
[22] |
Fu J W, Yang Y S, Guo J J, et al. Formation of a two-phase microstructure in Fe–Cr–Ni alloy during directional solidification. J Cryst Growth, 2008, 311(1): 132 doi: 10.1016/j.jcrysgro.2008.10.021
|
[23] |
Hammer O, Svensson U. Solidification and Casting of Metals. London: The Metals Society, 1979: 401
|
[24] |
Rajasekhar K, Harendranath C S, Raman R, et al. Microstructural evolution during solidification of austenitic stainless steel weld metals: A color metallographic and electron microprobe analysis study. Mater Charact, 1997, 38(2): 53 doi: 10.1016/S1044-5803(97)80024-1
|