<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 11
Dec.  2019
Turn off MathJax
Article Contents
HOU Yun-bing, ZHANG Xing, LI Pan, DING Peng-chu, CAO Shu-xiong, HAN Dong. Mechanical properties and nondestructive testing of cemented mass of unclassified tailings under freeze-thaw cycles[J]. Chinese Journal of Engineering, 2019, 41(11): 1433-1443. doi: 10.13374/j.issn2095-9389.2019.02.23.002
Citation: HOU Yun-bing, ZHANG Xing, LI Pan, DING Peng-chu, CAO Shu-xiong, HAN Dong. Mechanical properties and nondestructive testing of cemented mass of unclassified tailings under freeze-thaw cycles[J]. Chinese Journal of Engineering, 2019, 41(11): 1433-1443. doi: 10.13374/j.issn2095-9389.2019.02.23.002

Mechanical properties and nondestructive testing of cemented mass of unclassified tailings under freeze-thaw cycles

doi: 10.13374/j.issn2095-9389.2019.02.23.002
More Information
  • Corresponding author: E-mail: 361797215@qq.com
  • Received Date: 2019-02-23
  • Publish Date: 2019-11-01
  • Tailings consolidation discharge can effectively solve the problem of tailings disposal. However, the tailings pile after consolidation is mostly on the surface, and its performance is greatly affected by the natural environment. Freeze-thaw cycles are widespread in northern China. Freeze-thaw has a great influence on the strength, ultrasonic velocity, and electrical resistance characteristics of cemented mass. To explore the damage evolution state and mechanism of the cemented mass of unclassified tailings under freeze-thaw cycle, in this paper, a series of freeze-thaw tests on a cemented mass of unclassified tailings from the Lilou iron mine were performed. Then the cemented mass samples after different runs of freeze-thaw tests were used to conduct uniaxial compressive strength tests, scanning electron microscopy (SEM) test, resistivity test, and ultrasonic wave velocity test. Quantitative analysis of surface crack images of samples was performed using MATLAB-based binarized digital image processing technology, and a test method for joint testing of freeze-thaw cycle damage of cemented mass specimens using electrical resistivity (ER) and ultrasonic pulse velocity (UPV) testing techniques was proposed. The results indicate that the uniaxial compressive strength (UCS) decreases with increase in freeze-thaw cycles. The greatest decline is for the UCS of cemented mass subjected to 0–5 freeze-thaw cycles. The damage of the cemented mass in the freeze-thaw cycle is a gradual accumulation process. The development process of the apparent degradation characteristics of the cemented mass of unclassified tailings is as follows: micro-fracture initiation → fracture extension development → outer layer failure → internal structure failure; the higher the initial strength of the cemented mass, the fewer the number of surface cracks. The internal microstructure changes from dense to loose. The UCS of the cemented mass is positively correlated with the ER and the UPV, following the logarithmic function relationship, and the nondestructive testing models of UCS-ER and UCS-UPV are established. It is shown that the ER and UPV can accurately and comprehensively evaluate the damage state in cemented mass of unclassified tailings.

     

  • loading
  • [1]
    孟躍輝, 倪文, 張玉燕. 我國尾礦綜合利用發展現狀及前景. 中國礦山工程, 2010, 39(5):4 doi: 10.3969/j.issn.1672-609X.2010.05.003

    Meng Y H, Ni W, Zhang Y Y. Current state of ore tailings reusing and its future development in China. China Mine Eng, 2010, 39(5): 4 doi: 10.3969/j.issn.1672-609X.2010.05.003
    [2]
    鄧文, 江登榜, 楊波, 等. 我國鐵尾礦綜合利用現狀和存在的問題. 現代礦業, 2012(9):1 doi: 10.3969/j.issn.1674-6082.2012.09.001

    Deng W, Jiang D B, Yang B, et al. Comprehensive utilization status and existing problems of iron tailings in China. Mod Min, 2012(9): 1 doi: 10.3969/j.issn.1674-6082.2012.09.001
    [3]
    侯運炳, 唐杰, 魏書祥. 尾礦固結排放技術研究. 金屬礦山, 2011(6):59

    Hou Y B, Tang J, Wei S X. Research on tailings’ cementation and discharging technology. Met Mine, 2011(6): 59
    [4]
    楊潔, 錢趙秋, 王旌. 反復凍融與高溫老化對砷污染土壤固化穩定化效果的影響. 環境科學, 2017, 38(11):4844

    Yang J, Qian Z Q, Wang J. Effects of repeated freezing and thawing and high temperature aging on the solidification and stabilization of arsenic contaminated soil. Environ Sci, 2017, 38(11): 4844
    [5]
    Fener M, Ince I. Effects of the freeze–thaw (F–T) cycle on the andesitic rocks (Sille-Konya/Turkey) used in construction building. J Afr Earth Sci, 2015, 109: 96 doi: 10.1016/j.jafrearsci.2015.05.006
    [6]
    徐光苗, 劉泉聲. 巖石凍融破壞機理分析及凍融力學試驗研究. 巖石力學與工程學報, 2005, 24(17):3076 doi: 10.3321/j.issn:1000-6915.2005.17.012

    Xu G M, Liu Q S. Analysis of mechanism of rock failure due to freeze-thaw cycling and mechanical testing study on frozen-thawed rocks. Chin J Rock Mech Eng, 2005, 24(17): 3076 doi: 10.3321/j.issn:1000-6915.2005.17.012
    [7]
    付偉, 汪稔. 飽和粉質黏土反復凍融電阻率及變形特性試驗研究. 巖土力學, 2010, 31(3):769 doi: 10.3969/j.issn.1000-7598.2010.03.018

    Fu W, Wang R. Experimental study of electrical resistivity and deformation characteristics of saturated silty clay during repeated freeze-thaw cycles. Rock Soil Mech, 2010, 31(3): 769 doi: 10.3969/j.issn.1000-7598.2010.03.018
    [8]
    付偉, 汪稔, 胡明鑒, 等. 不同溫度下凍土單軸抗壓強度與電阻率關系研究. 巖土力學, 2009, 30(1):73 doi: 10.3969/j.issn.1000-7598.2009.01.011

    Fu W, Wang R, Hu M J, et al. Study of relationship between uniaxial compressive strength and electrical resistivity of frozen soil under different temperatures. Rock Soil Mech, 2009, 30(1): 73 doi: 10.3969/j.issn.1000-7598.2009.01.011
    [9]
    劉泉聲, 黃詩冰, 康永水, 等. 巖體凍融疲勞損傷模型與評價指標研究. 巖石力學與工程學報, 2015, 34(6):1116

    Liu Q S, Huang S B, Kang Y S, et al. Fatigue damage model and evaluation index for rock mass under freezing-thawing cycles. Chin J Rock Mech Eng, 2015, 34(6): 1116
    [10]
    魏作安, 楊永浩, 徐佳俊, 等. 人工凍結尾礦力學特性單軸壓縮試驗研究. 東北大學學報: 自然科學版, 2016, 37(1):123

    Wei Z A, Yang Y H, Xu J J, et al. Experiment study on the mechanical properties of frozen tailings by uniaxial compression tests. J Northeastern Univ Nat Sci, 2016, 37(1): 123
    [11]
    常丹, 劉建坤, 李旭, 等. 凍融循環對青藏粉砂土力學性質影響的試驗研究. 巖石力學與工程學報, 2014, 33(7):1496

    Chang D, Liu J K, Li X, et al. Experiment study of effects of freezing-thawing cycles on mechanical properties of Qinghat-Tibet silty sand. Chin J Rock Mech Eng, 2014, 33(7): 1496
    [12]
    鄧代強, 高永濤, 吳順川, 等. 基于聲波測速的充填體完整性檢測. 北京科技大學學報, 2010, 32(10):1248

    Deng D Q, Gao Y T, Wu S C, et al. Integrality detection of backfill based on acoustic wave velocity testing. J Univ Sci Technol Beijing, 2010, 32(10): 1248
    [13]
    李俊如, 高建光, 王耀輝. 超聲波檢測混凝土裂縫及裂縫成因分析. 巖土力學, 2001, 22(3):291 doi: 10.3969/j.issn.1000-7598.2001.03.012

    Li J R, Gao J G, Wang Y H. Supersonic wave testing on concrete crack depth and analysis of crack initiation. Rock Soil Mech, 2001, 22(3): 291 doi: 10.3969/j.issn.1000-7598.2001.03.012
    [14]
    王文華, 萬健. 凍融循環作用對碳酸鹽漬土單軸抗壓強度影響的試驗研究. 長春工程學院學報: 自然科學版, 2016, 17(3):6

    Wang W H, Wan J. The experimental study on the role of freeze-thaw cycles on uniaxial compressive strength influence in carbonate saline soil. J Changchun Inst Technol Nat Sci Ed, 2016, 17(3): 6
    [15]
    徐文彬, 杜建華, 宋衛東, 等. 超細全尾砂材料膠凝成巖機理試驗. 巖土力學, 2013, 34(8):2295

    Xu W B, Du J H, Song W D, et al. Experiment on the mechanism of consolidating backfill body of extra-fine grain unclassified tailings and cementitious materials. Rock Soil Mech, 2013, 34(8): 2295
    [16]
    胡學濤, 梁冰, 陳億軍, 等. 凍融循環對固化污泥力學及微觀結構特性影響. 巖土力學, 2016, 37(5):1317

    Hu X T, Liang B, Chen Y J, et al. Mechanical and microstructural properties changes of solidified sewage sludge due to cyclic freezing and thawing. Rock Soil Mech, 2016, 37(5): 1317
    [17]
    程海勇, 吳順川, 吳愛祥, 等. 基于膏體穩定系數的級配表征及屈服應力預測. 工程科學學報, 2018, 40(10):1168

    Cheng H Y, Wu S C, Wu A X, et al. Grading characterization and yield stress prediction based on paste stability coefficient. Chin J Eng, 2018, 40(10): 1168
    [18]
    Viran P A G, Binal A. Effects of repeated freeze–thaw cycles on physico-mechanical properties of cohesive soils. Arabian J Geosci, 2018, 11: 250 doi: 10.1007/s12517-018-3592-5
    [19]
    張英, 邴慧, 楊成松. 基于SEM和MIP的凍融循環對粉質黏土強度影響機制研究. 巖石力學與工程學報, 2015, 34(增刊1): 3597

    Zhang Y, Bing H, Yang C S. Influences of freeze-thaw cycles on mechanical porperties of silty clay based on SEM and MIP test. Chin J Rock Mech Eng, 2015, 34(Suppl 1): 3597
    [20]
    Koohestani B. Effect of saline admixtures on mechanical and microstructural properties of cementitious matrices containing tailings. Construction Building Mater, 2017, 156: 1019 doi: 10.1016/j.conbuildmat.2017.09.048
    [21]
    Aldaood A, Bouasker M, Al-Mukhtar M. Impact of freeze–thaw cycles on mechanical behaviour of lime stabilized gypseous soils. Cold Regions Sci Technol, 2014, 99: 38 doi: 10.1016/j.coldregions.2013.12.003
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article views (1083) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频