Citation: | HOU Yun-bing, ZHANG Xing, LI Pan, DING Peng-chu, CAO Shu-xiong, HAN Dong. Mechanical properties and nondestructive testing of cemented mass of unclassified tailings under freeze-thaw cycles[J]. Chinese Journal of Engineering, 2019, 41(11): 1433-1443. doi: 10.13374/j.issn2095-9389.2019.02.23.002 |
[1] |
孟躍輝, 倪文, 張玉燕. 我國尾礦綜合利用發展現狀及前景. 中國礦山工程, 2010, 39(5):4 doi: 10.3969/j.issn.1672-609X.2010.05.003
Meng Y H, Ni W, Zhang Y Y. Current state of ore tailings reusing and its future development in China. China Mine Eng, 2010, 39(5): 4 doi: 10.3969/j.issn.1672-609X.2010.05.003
|
[2] |
鄧文, 江登榜, 楊波, 等. 我國鐵尾礦綜合利用現狀和存在的問題. 現代礦業, 2012(9):1 doi: 10.3969/j.issn.1674-6082.2012.09.001
Deng W, Jiang D B, Yang B, et al. Comprehensive utilization status and existing problems of iron tailings in China. Mod Min, 2012(9): 1 doi: 10.3969/j.issn.1674-6082.2012.09.001
|
[3] |
侯運炳, 唐杰, 魏書祥. 尾礦固結排放技術研究. 金屬礦山, 2011(6):59
Hou Y B, Tang J, Wei S X. Research on tailings’ cementation and discharging technology. Met Mine, 2011(6): 59
|
[4] |
楊潔, 錢趙秋, 王旌. 反復凍融與高溫老化對砷污染土壤固化穩定化效果的影響. 環境科學, 2017, 38(11):4844
Yang J, Qian Z Q, Wang J. Effects of repeated freezing and thawing and high temperature aging on the solidification and stabilization of arsenic contaminated soil. Environ Sci, 2017, 38(11): 4844
|
[5] |
Fener M, Ince I. Effects of the freeze–thaw (F–T) cycle on the andesitic rocks (Sille-Konya/Turkey) used in construction building. J Afr Earth Sci, 2015, 109: 96 doi: 10.1016/j.jafrearsci.2015.05.006
|
[6] |
徐光苗, 劉泉聲. 巖石凍融破壞機理分析及凍融力學試驗研究. 巖石力學與工程學報, 2005, 24(17):3076 doi: 10.3321/j.issn:1000-6915.2005.17.012
Xu G M, Liu Q S. Analysis of mechanism of rock failure due to freeze-thaw cycling and mechanical testing study on frozen-thawed rocks. Chin J Rock Mech Eng, 2005, 24(17): 3076 doi: 10.3321/j.issn:1000-6915.2005.17.012
|
[7] |
付偉, 汪稔. 飽和粉質黏土反復凍融電阻率及變形特性試驗研究. 巖土力學, 2010, 31(3):769 doi: 10.3969/j.issn.1000-7598.2010.03.018
Fu W, Wang R. Experimental study of electrical resistivity and deformation characteristics of saturated silty clay during repeated freeze-thaw cycles. Rock Soil Mech, 2010, 31(3): 769 doi: 10.3969/j.issn.1000-7598.2010.03.018
|
[8] |
付偉, 汪稔, 胡明鑒, 等. 不同溫度下凍土單軸抗壓強度與電阻率關系研究. 巖土力學, 2009, 30(1):73 doi: 10.3969/j.issn.1000-7598.2009.01.011
Fu W, Wang R, Hu M J, et al. Study of relationship between uniaxial compressive strength and electrical resistivity of frozen soil under different temperatures. Rock Soil Mech, 2009, 30(1): 73 doi: 10.3969/j.issn.1000-7598.2009.01.011
|
[9] |
劉泉聲, 黃詩冰, 康永水, 等. 巖體凍融疲勞損傷模型與評價指標研究. 巖石力學與工程學報, 2015, 34(6):1116
Liu Q S, Huang S B, Kang Y S, et al. Fatigue damage model and evaluation index for rock mass under freezing-thawing cycles. Chin J Rock Mech Eng, 2015, 34(6): 1116
|
[10] |
魏作安, 楊永浩, 徐佳俊, 等. 人工凍結尾礦力學特性單軸壓縮試驗研究. 東北大學學報: 自然科學版, 2016, 37(1):123
Wei Z A, Yang Y H, Xu J J, et al. Experiment study on the mechanical properties of frozen tailings by uniaxial compression tests. J Northeastern Univ Nat Sci, 2016, 37(1): 123
|
[11] |
常丹, 劉建坤, 李旭, 等. 凍融循環對青藏粉砂土力學性質影響的試驗研究. 巖石力學與工程學報, 2014, 33(7):1496
Chang D, Liu J K, Li X, et al. Experiment study of effects of freezing-thawing cycles on mechanical properties of Qinghat-Tibet silty sand. Chin J Rock Mech Eng, 2014, 33(7): 1496
|
[12] |
鄧代強, 高永濤, 吳順川, 等. 基于聲波測速的充填體完整性檢測. 北京科技大學學報, 2010, 32(10):1248
Deng D Q, Gao Y T, Wu S C, et al. Integrality detection of backfill based on acoustic wave velocity testing. J Univ Sci Technol Beijing, 2010, 32(10): 1248
|
[13] |
李俊如, 高建光, 王耀輝. 超聲波檢測混凝土裂縫及裂縫成因分析. 巖土力學, 2001, 22(3):291 doi: 10.3969/j.issn.1000-7598.2001.03.012
Li J R, Gao J G, Wang Y H. Supersonic wave testing on concrete crack depth and analysis of crack initiation. Rock Soil Mech, 2001, 22(3): 291 doi: 10.3969/j.issn.1000-7598.2001.03.012
|
[14] |
王文華, 萬健. 凍融循環作用對碳酸鹽漬土單軸抗壓強度影響的試驗研究. 長春工程學院學報: 自然科學版, 2016, 17(3):6
Wang W H, Wan J. The experimental study on the role of freeze-thaw cycles on uniaxial compressive strength influence in carbonate saline soil. J Changchun Inst Technol Nat Sci Ed, 2016, 17(3): 6
|
[15] |
徐文彬, 杜建華, 宋衛東, 等. 超細全尾砂材料膠凝成巖機理試驗. 巖土力學, 2013, 34(8):2295
Xu W B, Du J H, Song W D, et al. Experiment on the mechanism of consolidating backfill body of extra-fine grain unclassified tailings and cementitious materials. Rock Soil Mech, 2013, 34(8): 2295
|
[16] |
胡學濤, 梁冰, 陳億軍, 等. 凍融循環對固化污泥力學及微觀結構特性影響. 巖土力學, 2016, 37(5):1317
Hu X T, Liang B, Chen Y J, et al. Mechanical and microstructural properties changes of solidified sewage sludge due to cyclic freezing and thawing. Rock Soil Mech, 2016, 37(5): 1317
|
[17] |
程海勇, 吳順川, 吳愛祥, 等. 基于膏體穩定系數的級配表征及屈服應力預測. 工程科學學報, 2018, 40(10):1168
Cheng H Y, Wu S C, Wu A X, et al. Grading characterization and yield stress prediction based on paste stability coefficient. Chin J Eng, 2018, 40(10): 1168
|
[18] |
Viran P A G, Binal A. Effects of repeated freeze–thaw cycles on physico-mechanical properties of cohesive soils. Arabian J Geosci, 2018, 11: 250 doi: 10.1007/s12517-018-3592-5
|
[19] |
張英, 邴慧, 楊成松. 基于SEM和MIP的凍融循環對粉質黏土強度影響機制研究. 巖石力學與工程學報, 2015, 34(增刊1): 3597
Zhang Y, Bing H, Yang C S. Influences of freeze-thaw cycles on mechanical porperties of silty clay based on SEM and MIP test. Chin J Rock Mech Eng, 2015, 34(Suppl 1): 3597
|
[20] |
Koohestani B. Effect of saline admixtures on mechanical and microstructural properties of cementitious matrices containing tailings. Construction Building Mater, 2017, 156: 1019 doi: 10.1016/j.conbuildmat.2017.09.048
|
[21] |
Aldaood A, Bouasker M, Al-Mukhtar M. Impact of freeze–thaw cycles on mechanical behaviour of lime stabilized gypseous soils. Cold Regions Sci Technol, 2014, 99: 38 doi: 10.1016/j.coldregions.2013.12.003
|