<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 2
Feb.  2020
Turn off MathJax
Article Contents
ZHANG Hao. Preparation of ecological activated carbon based on steel slag-modified biomass waste material and its formaldehyde degradation performance[J]. Chinese Journal of Engineering, 2020, 42(2): 172-178. doi: 10.13374/j.issn2095-9389.2019.02.03.001
Citation: ZHANG Hao. Preparation of ecological activated carbon based on steel slag-modified biomass waste material and its formaldehyde degradation performance[J]. Chinese Journal of Engineering, 2020, 42(2): 172-178. doi: 10.13374/j.issn2095-9389.2019.02.03.001

Preparation of ecological activated carbon based on steel slag-modified biomass waste material and its formaldehyde degradation performance

doi: 10.13374/j.issn2095-9389.2019.02.03.001
More Information
  • With steel slag and biomass waste material as the research object, biomass waste material was modified by metal oxide in steel slag to obtain ecological activated carbon. The influences of steel slag type, grinding time of steel slag, and the amount of steel slag ultrafine powder on the formaldehyde degradation performance of ecological activated carbon were studied. The chemical composition of steel slag, mineral composition of steel slag, particle size distribution of steel slag, structural composition of steel slag ultrafine powder, the pore structure of ecological activated carbon, and the microstructure of ecological activated carbon were characterized by X-ray fluorescence X-ray diffraction, laser particle size distribution analysis, Fourier-transform infrared spectroscopy, Brunauer-Emmett-Teller analysis, and scanning electron microscopy, respectively. The results show that the prepared ecological activated carbon show good formaldehyde degradation performance and reasonable economy; the degradation rate of formaldehyde after 10 h is 57.5%; when steel slag is electric furnace slag, the grinding time of the steel slag is 90 min, and the amount of steel slag ultrafine powder is 20 g. High contents of Fe and Mn were present in the electric furnace slag. Iron promoted the concentration of a large amount of formaldehyde in the porous structure of activated carbon, and Mn catalyzes the degradation of enriched formaldehyde, realizing the synergistic effect of adsorption degradation and catalytic degradation. Appropriately extending the grinding time of the steel slag can significantly reduce the particle size of the steel slag ultrafine powder and improve the particle size distribution uniformity of the steel slag ultrafine powder, which is beneficial to increasing the degradation area of steel slag ultrafine powder, activated carbon, and formaldehyde. An appropriate amount of steel slag ultrafine powder can improve the pulverization rate of ecological activated carbon and offset the decline of activated carbon adsorption performance due to the decrease of porosity and specific surface area of the activated carbon.

     

  • loading
  • [1]
    Chen L, Yin S F, Luo S L, et al. Bi2O2CO3/BiOI photocatalysts with heterojunctions highly efficient for visible-light treatment of dye-containing wastewater. Ind Eng Chem Res, 2012, 51(19): 6760 doi: 10.1021/ie300567y
    [2]
    Zhao D, Peng T Y, Liu M, et al. Fabrication, characterization and photocatalytic activity of Gd3+-doped titania nanoparticles with mesostructure. Microporous Mesoporous Mater, 2008, 114(1-3): 166 doi: 10.1016/j.micromeso.2008.01.001
    [3]
    Hsu N Y, Chen P Y, Chang H W, et al. Changes in profiles of airborne fungi in flooded homes in southern Taiwan after Typhoon Morakot. Sci Total Environ, 2011, 409(9): 1677 doi: 10.1016/j.scitotenv.2011.01.042
    [4]
    Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials. Adv Mater, 2006, 18(6): 2073
    [5]
    Zhang X L, Zhang Y, Wang S S, et al. Effect of activation agents on the surface chemical properties and desulphurization performance of activated carbon. Sci China Technol Sci, 2010, 53(9): 2515 doi: 10.1007/s11431-010-4058-5
    [6]
    何元淵, 祁彩菊, 仲萬軍, 等. 核桃殼質負載納米零價鐵吸附廢水中的Pb2+. 精細化工, 2014, 31(4):480

    He Y Y, Qi C J, Zhong W J, et al. A study on the adsorption of Pb2+ in wastewater by walnut shell supported-Fe0. Fine Chem, 2014, 31(4): 480
    [7]
    韓彬, 周美華, 榮達. 稻草秸稈活性炭的制備及其表征. 農業環境科學學報, 2009, 28(4):828 doi: 10.3321/j.issn:1672-2043.2009.04.034

    Han B, Zhou M H, Rong D. Preparation and characterization of activated carbon from rice straw. J Agro-Environ Sci, 2009, 28(4): 828 doi: 10.3321/j.issn:1672-2043.2009.04.034
    [8]
    Sun Y, Webley P A. Preparation of activated carbons from corncob with large specific surface area by a variety of chemical activators and their application in gas storage. Chem Eng J, 2010, 162(3): 883 doi: 10.1016/j.cej.2010.06.031
    [9]
    Sun K, Jiang J C. Preparation and characterization of activated carbon from rubber-seed shell by physical activation with steam. Biomass Bioenergy, 2010, 34(4): 539 doi: 10.1016/j.biombioe.2009.12.020
    [10]
    Zabihi M, Ahmadpour A, Asl A H. Removal of mercury from water by carbonaceous sorbents derived from walnut shell. J Hazard Mater, 2009, 167(1-3): 230 doi: 10.1016/j.jhazmat.2008.12.108
    [11]
    Fang N J, Guo J X, Shu S, et al. Influence of textures, oxygen-containing functional groups and metal species on SO2 and NO removal over Ce-Mn/NAC. Fuel, 2017, 202: 328 doi: 10.1016/j.fuel.2017.04.035
    [12]
    Yao G H, Gui K T, Wang F. Low-temperature De-NOx by selective catalytic reduction based on iron-based catalysts. Chem Eng Technol, 2010, 33(7): 1093 doi: 10.1002/ceat.201000015
    [13]
    Ding J, Zhong Q, Zhang S L. Catalytic efficiency of iron oxides in decomposition of H2O2, for simultaneous NOx and SO2 removal: Effect of calcination temperature. J Mol Catal A Chem, 2014, 393: 222 doi: 10.1016/j.molcata.2014.06.018
    [14]
    Ramezanianpour A A, Kazemian A, Moghaddam M A, et al. Studying effects of low-reactivity GGBFS on chloride resistance of conventional and high strength concretes. Mater Struct, 2016, 49(7): 2597 doi: 10.1617/s11527-015-0670-y
    [15]
    Morel F, Bounor-Legaré V, Espuche E, et al. Surface modification of calcium carbonate nanofillers by fluoro- and alkyl-alkoxysilane: Consequences on the morphology, thermal stability and gas barrier properties of polyvinylidene fluoride nanocomposites. Eur Polym J, 2012, 48(5): 919 doi: 10.1016/j.eurpolymj.2012.03.004
    [16]
    Zhang H. Fang Y. Temperature dependent photoluminescence of surfactant assisted electrochemically synthesized ZnSe nanostructures. J Alloys Compd, 2019, 781: 201 doi: 10.1016/j.jallcom.2018.11.375
    [17]
    張浩. 基于光催化性能的Cu?Ce/TiO2濕性能. 材料工程, 2018, 46(1):114 doi: 10.11868/j.issn.1001-4381.2016.001100

    Zhang H. Cu?Ce/TiO2 moisture performance based on photocatalytic performance. J Mater Eng, 2018, 46(1): 114 doi: 10.11868/j.issn.1001-4381.2016.001100
    [18]
    Fu Y L, Zhang Y F, Li G Q, et al. NO removal activity and surface characterization of activated carbon with oxidation modification. J Energy Inst, 2017, 90(5): 813 doi: 10.1016/j.joei.2016.06.002
    [19]
    Guo Y Y, Li Y R, Zhu T Y, et al. Investigation of SO2 and NO adsorption species on activated carbon and the mechanism of NO promotion effect on SO2. Fuel, 2015, 143: 536 doi: 10.1016/j.fuel.2014.11.084
    [20]
    張浩, 張欣雨, 龍紅明. 弱酸改性鋼渣微粉的光譜學分析. 光譜學與光譜分析, 2018, 38(11):3502

    Zhang H, Zhang X Y, Long H M. Spectroscopic analysis of weak acid modified steel slag powder. Spectrosc Spect Anal, 2018, 38(11): 3502
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(3)  / Tables(6)

    Article views (1750) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频