Citation: | GAO Ning, LI Wei. Effect of stress ratio on the very high-cycle fatigue failure mechanism of TC4 titanium alloy[J]. Chinese Journal of Engineering, 2019, 41(2): 254-260. doi: 10.13374/j.issn2095-9389.2019.02.013 |
[1] |
McEvily A J, Nakamura T, Oguma H, et al. On the mechanism of very high cycle fatigue in Ti-6Al-4V. Scripta Mater, 2008, 59(11): 1207 doi: 10.1016/j.scriptamat.2008.08.012
|
[2] |
Oguma H, Nakamura T. The effect of microstructure on very high cycle fatigue properties in Ti-6Al-4V. Scripta Mater, 2010, 63(1): 32 doi: 10.1016/j.scriptamat.2010.02.043
|
[3] |
Stanzl-Tschegg S E, Mayer H. Fatigue and fatigue crack growth of aluminium alloys at very high numbers of cycles. Int J Fatigue, 2001, 23(Suppl 1): 231 http://www.sciencedirect.com/science/article/pii/S0142112301001670
|
[4] |
鄧海龍, 李偉, 孫振鐸, 等. 基于夾雜-細晶粒區-魚眼疲勞失效的超長壽命預測模型. 工程科學學報, 2017, 39(4): 567 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201704012.htm
Deng H L, Li W, Sun Z D, et al. A prediction model for the very high cycle fatigue life for inclusion-FGA (fine granular area)-fisheye induced fatigue failure. Chin J Eng, 2017, 39(4): 567 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201704012.htm
|
[5] |
劉小龍, 孫成奇, 周硯田, 等. 微結構和應力比對Ti-6Al-4V高周和超高周疲勞行為的影響. 金屬學報, 2016, 52(8): 923 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201608004.htm
Liu X L, Sun C Q, Zhou Y T, et al. Effects of microstructure and stress ratio on high-cycle and very high cycle fatigue behavior of Ti-6Al-4V alloy. Acta Metall Sin, 2016, 52(8): 923 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201608004.htm
|
[6] |
Crupi V, Epasto G, Guglielmino E, et al. Influence of microstructure[alpha+beta and beta] on very high cycle fatigue behavior of Ti-6Al-4V alloy. Int J Fatigue, 2017, 95: 64 doi: 10.1016/j.ijfatigue.2016.10.002
|
[7] |
Sakai T, Takeda M, Shiozawa K, et al. Experimental reconfirmation of characteristic S-N property for high carbon chromium bearing steel in wide life region in rotating bending. J Soc Mater Sci Jpn, 2000, 49(7): 779 doi: 10.2472/jsms.49.779
|
[8] |
Shiozawa K, Lu L, Ishihara S. S-N curve characteristics and subsurface crack initiation behavior in ultra-long life fatigue of a high carbon-chromium bearing steel. Fatigue Fract Eng Mater Struct, 2001, 24(12): 781 doi: 10.1046/j.1460-2695.2001.00459.x
|
[9] |
Shiozawa K, Murai M, Shimatani Y, et al. Transition of fatigue failure mode of Ni-Cr-Mo low-alloy steel in very high cycle regime. Int J Fatigue, 2010, 32(3): 541 doi: 10.1016/j.ijfatigue.2009.06.011
|
[10] |
Yu Y, Gu J L, Bai B Z, et al. Very high cycle fatigue mechanism of carbide-free bainite/martensite steel micro-alloyed with Nb. Mater Sci Eng A, 2009, 527(1-2): 212 doi: 10.1016/j.msea.2009.08.024
|
[11] |
Xu X X, Yu Y, Cui W L, et al. Ultra-high cycle fatigue behavior of high strength steel with carbide-free bainite/martensite complex mircrostructure. Int J Miner Metall Mater, 2009, 16(3): 285 doi: 10.1016/S1674-4799(09)60051-0
|
[12] |
Neal D F, Blenkinsop P A. Internal fatigue origins in two alpha-beta titanium alloys. Acta Metall, 1976, 24(1): 59 doi: 10.1016/0001-6160(76)90147-4
|
[13] |
Lütjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Mater Sci Eng A, 1998, 243(1-2): 32 doi: 10.1016/S0921-5093(97)00778-8
|
[14] |
Bache M R. A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions. Int J Fatigue, 2003, 25(9-11): 1079 doi: 10.1016/S0142-1123(03)00145-2
|
[15] |
Li W, Sakai T, Li Q, et al. Effect of loading type on fatigue properties of high strength bearing steel in very high cycle regime. Mater Sci Eng A, 2011, 528(15): 5044 doi: 10.1016/j.msea.2011.03.020
|
[16] |
Murakami Y. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions. 1st ed. Oxford: Elsevier Science Ltd, 2002
|
[17] |
Sakai T, Sato Y, Oguma N. Characteristic S-N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue. Fatigue Fract Eng Mater Struct, 2002, 25(8-9): 765 doi: 10.1046/j.1460-2695.2002.00574.x
|