Citation: | SUN Shan, LIU Zhi-dong, DIAO Peng. Preparation and catalytic studies of pyrrole-doped carbon black oxide cathode materials for oxygen reduction reactions[J]. Chinese Journal of Engineering, 2019, 41(2): 216-223. doi: 10.13374/j.issn2095-9389.2019.02.008 |
[1] |
唐致遠, 宋世棟, 劉建華. 質子交換膜燃料電池電極催化劑的研究進展. 電源技術, 2003, 27(1): 58 doi: 10.3969/j.issn.1002-087X.2003.01.018
Tang Z Y, Song S D, Liu J H. Progress on electrocatalysts for proton exchange membrane fuel cell. Chin J Power Sources, 2003, 27(1): 58 doi: 10.3969/j.issn.1002-087X.2003.01.018
|
[2] |
魏子棟. 質子交換膜燃料電池催化劑性能增強方法研究進展. 化工進展, 2016, 35(9): 2629 https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201609001.htm
Wei Z D. Advances of the catalytic performance enhancement for proton exchange membrane fuel cells. Chem Ind Eng Prog, 2016, 35(9): 2629 https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201609001.htm
|
[3] |
Sharaf O Z, Orhan M F. An overview of fuel cell technology: fundamentals and applications. Renewable Sustainable Energy Rev, 2014, 32: 810 doi: 10.1016/j.rser.2014.01.012
|
[4] |
邵敏華. 燃料電池催化劑//中國化學會第29屆學術年會摘要集. 北京, 2014: 48
Shao M H. Catalysts for fuel cells//Summary of the 29th Annual Conference of the Chinese Chemical Association. Beijing, 2014: 48
|
[5] |
查全性. 電極過程動力學導論. 3版. 北京: 科學出版社, 2002
Zha Q X. Introduction of Electrode Process Kinetics. 3rd Ed. Beijing: Science Press, 2002
|
[6] |
Yang L J, Zhao Y, Chen S, et al. A mini review on carbon-based metal-free electrocatalysts for oxygen reduction reaction. Chin J Catal, 2013, 34(11): 1986 doi: 10.1016/S1872-2067(12)60713-X
|
[7] |
Cheng F Y, Chen J. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev, 2012, 41(6): 2172 doi: 10.1039/c1cs15228a
|
[8] |
Holby E F, Choudhury S, Zelenay P. Non-PGM ORR catalyst active-site screening. ECS Meeting Abstracts, 2015: 1280
|
[9] |
Hummers Jr W S, Offeman R E. Preparation of graphitic oxide. J Am Chem Soc, 1958, 80(6): 1339 doi: 10.1021/ja01539a017
|
[10] |
Zhao A Q, Masa J, Xia W, et al. Spinel Mn-Co oxide in N-doped carbon nanotubes as a bifunctional electrocatalyst synthesized by oxidative cutting. J Am Chem Soc, 2014, 136(21): 7551 doi: 10.1021/ja502532y
|
[11] |
Fleurier R, Lauret J S, Lopez U, et al. Transmission electron microscopy and UV-vis-IR spectroscopy analysis of the diameter sorting of carbon nanotubes by gradient density ultracentrifugation. Adv Funct Mater, 2009, 19(14): 2219 doi: 10.1002/adfm.200801778
|
[12] |
Biesinger M C, Payne B P, Grosvenor A P, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci, 2011, 257(7): 2717 doi: 10.1016/j.apsusc.2010.10.051
|
[13] |
Eisenberg D, Stroek W, Geels N J, et al. A simple synthesis of an N-doped carbon ORR catalyst: hierarchical micro/meso/macro porosity and graphitic shells. Chem Eur J, 2016, 22(2): 501 doi: 10.1002/chem.201504568
|
[14] |
Zhao P, Rusli E, Xia J H, et al. Study of carbon in thermal oxide formed on 4H-SiC by XPS. Mater Sci Forum, 2005, 483-485: 653 doi: 10.4028/www.scientific.net/MSF.483-485.653
|
[15] |
Pan F M, Stair P C, Fleisch T H. Chemisorption of pyridine and pyrrole on iron oxide surfaces studied by XPS. Surf Sci, 1986, 177(1): 1 doi: 10.1016/0039-6028(86)90253-0
|