<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 2
Feb.  2019
Turn off MathJax
Article Contents
WANG Ji-zhen, YIN Wan-zhong, SUN Zhong-mei. Effect and mechanisms of sodium carbonate on the auto-carrier flotation of scheelite[J]. Chinese Journal of Engineering, 2019, 41(2): 174-180. doi: 10.13374/j.issn2095-9389.2019.02.003
Citation: WANG Ji-zhen, YIN Wan-zhong, SUN Zhong-mei. Effect and mechanisms of sodium carbonate on the auto-carrier flotation of scheelite[J]. Chinese Journal of Engineering, 2019, 41(2): 174-180. doi: 10.13374/j.issn2095-9389.2019.02.003

Effect and mechanisms of sodium carbonate on the auto-carrier flotation of scheelite

doi: 10.13374/j.issn2095-9389.2019.02.003
More Information
  • Corresponding author: WANG Ji-zhen, E-mail: jizhenwang126@126.com
  • Received Date: 2018-01-31
  • Publish Date: 2019-02-01
  • Because of the low recovery of -10 μm fine scheelite particles in scheelite flotation, some amount of fine scheelite is lost in the tailing, resulting in the wasting of scheelite resources. It is urgently needed to solve the problems inherent in fine scheelite flotation and explore new processes of fine ores to effectively recover fine scheelite. The carrier flotation has proven to be an effective method of improving the recovery of scheelite by promoting the recovery of fine particles. Based on studies of the effect of particle size and particle fraction on scheelite flotation, the application of auto-carrier flotation in the recovery of -10 μm scheelite using sodium carbonate in both the presence and absence of sodium carbonate were studied. The effect of percentage carrier, particle size of carrier, and sodium carbonate on the auto-carrier flotation of scheelite were also studied through flotation tests, theoretical calculation, and instrument testing. The results indicate that the contents and particle size of coarse particles exert significant influence on auto-carrier flotation. The recovery of fine scheelite with a size of -10 μm is increased by using auto-carrier flotation with the proper carrier percentage and size. The addition of sodium carbonate strengthens the carrier flotation of scheelite and therefore improves the scheelite recovery. Furthermore, the addition of sodium carbonate can also expand the percentage and particle size range of carrier mineral. The results of mechanism studies indicate that there exists interaction among scheelite particles, which results in the adhesion of fine particle to carrier. The hydrophobic force is the main reason that the scheelite particles attracted each other, and the addition of sodium carbonate increases the adsorption of sodium oleate onto the scheelite surface, thereby improving the hydrophobicity of scheelite and the hydrophobic force among scheelite particles. It can be concluded that the auto-carrier flotation of scheelite can be improved by adding sodium carbonate.

     

  • loading
  • [1]
    Liu C, Feng Q M, Zhang G F, et al. Effect of depressants in the selective flotation of scheelite and calcite using oxidized paraffin soap as collector. Int J Miner Process, 2016, 157: 210 doi: 10.1016/j.minpro.2016.11.011
    [2]
    Yin W Z, Wang J Z. Effects of particle size and particle interactions on scheelite flotation. Trans Nonferrous Met Soc China, 2014, 24(11): 3682 doi: 10.1016/S1003-6326(14)63515-9
    [3]
    Rubio J, Capponi F, Rodrigues R T, et al. Enhanced flotation of sulfide fines using the emulsified oil extender technique. Int J Miner Process, 2007, 84(1-4): 41 doi: 10.1016/j.minpro.2007.04.002
    [4]
    王淀佐. 浮選理論的新進展. 北京: 科學出版社, 1992

    Wang D Z. New Development in Flotation Theory. Beijing: Science Press, 1992
    [5]
    邱冠周, 胡岳華, 王淀佐. 顆粒間相互作用與細粒浮選. 長沙: 中南工業大學出版社, 1993

    Qiu G Z, Hu Y H, Wang D Z. Interactions between Particles and Flotation of Fine Particles. Changsha: Central South University of Technology Press, 1993
    [6]
    Koh P T L, Schwarz M P. CFD modeling of bubble-particle collision rates and deficiencies in a flotation cell. Miner Eng, 2003, 16(11): 1055 doi: 10.1016/j.mineng.2003.05.005
    [7]
    朱陽戈, 張國范, 馮其明, 等. 微細粒鈦鐵礦的自載體浮選. 中國有色金屬學報, 2009, 19(3): 554 doi: 10.3321/j.issn:1004-0609.2009.03.025

    Zhu Y G, Zhang G F, Feng Q M, et al. Autogenous-carrier flotation of fine ilmenite. Chin J Nonferrous Met, 2009, 19(3): 554 doi: 10.3321/j.issn:1004-0609.2009.03.025
    [8]
    Valderrama L, Rubio J. High intensity conditioning and the carrier flotation of gold fine particles. Int J Miner Process, 1998, 52(4): 273 doi: 10.1016/S0301-7516(97)00068-9
    [9]
    Lange A G, Skinner W M, Smart R S C. Fine: Coarse particle interactions and aggregation in sphalerite flotation. Miner Eng, 1997, 10(7): 681 doi: 10.1016/S0892-6875(97)00048-4
    [10]
    Ate?ok G, Boylu F, ?elǐk M S. Carrier flotation for desulfurization and deashing of difficult-to-float coals. Miner Eng, 2001, 14(6): 661 doi: 10.1016/S0892-6875(01)00058-9
    [11]
    肖駿, 陳代雄. 聚苯乙烯載體浮選微細粒白鎢礦研究. 中國鎢業, 2015, 30(6): 14 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWU201506005.htm

    Xiao J, Chen D X. Flotation of micro-fine scheelite by applying polystyrene as carrier. China Tungsten Ind, 2015, 30(6): 14 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWU201506005.htm
    [12]
    陳秀珍. 疏水性聚合物對細粒級白鎢礦載體浮選工藝和機理研究[學位論文]. 長沙: 中南大學, 2014

    Chen X Z. Study on Process and Mechanism Research of Carrier Flotation of Fine Scheelite Used with Hydrophobic Polymers [Dissertation]. Changsha: Central South University, 2014
    [13]
    王紀鎮, 印萬忠, 李振. 白鎢礦與方解石浮選行為的差異及其機理研究. 礦產保護與利用, 2016(4): 37 https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201604008.htm

    Wang J Z, Yin W Z, Li Z. The mechanism and comparison of flotation behavior of scheelite and calcite. Conservation Util Miner Resour, 2016(4): 37 https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201604008.htm
    [14]
    沈慧庭, 宮中桂. 白鎢礦浮選中方解石的影響及消除影響的方法和機理研究. 湖南有色金屬, 1996, 12(2): 36 https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ602.008.htm

    Shen H T, Gong Z G. The mechanism and method to eliminate the influence of calcite on scheelite flotation. Hunan Nonferrous Met, 1996, 12(2): 36 https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ602.008.htm
    [15]
    陳臣. 無機陰離子對三種典型含鈣鹽類礦物浮選行為影響及作用機制[學位論文]. 長沙: 中南大學, 2011

    Chen C. Study on the Influence of Inorganic Anions on the Flotation Behavior of Three Typical Calcium Minerals and Its Mechanism of Action [Dissertation]. Changsha: Central South University, 2011
    [16]
    孫偉, 陳臣, 唐鴻鵠. 碳酸根對方解石浮選速率的影響及機理研究. 中國礦業大學學報, 2012, 41(1): 48 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201201010.htm

    Sun W, Chen C, Tang H H. Effects and action mechanism of CO32- on flotation rate of calcite. J China Univ Min Technol, 2012, 41(1): 48 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201201010.htm
    [17]
    Marinakis K I, Kelsall G H. The surface chemical properties of scheelite (CaWO4) I. The scheelite/water interface and CaWO4 solubility. Colloids Surf, 1987, 25(2-4): 369 doi: 10.1016/0166-6622(87)80315-3
    [18]
    趙中偉, 曹才放, 李洪桂. 碳酸鈉分解白鎢礦的熱力學分析. 中國有色金屬學報, 2008, 18(2): 356 doi: 10.3321/j.issn:1004-0609.2008.02.028

    Zhao Z W, Cao C F, Li H G. Thermodynamics on soda decomposition of scheelite. Chin JNonferrous Met, 2008, 18(2): 356 doi: 10.3321/j.issn:1004-0609.2008.02.028
    [19]
    Shi Q, Zhang G F, Feng Q M, et al. Effect of solution chemistry on the flotation system of smithsonite and calcite. Int J Miner Process, 2013, 119: 34 doi: 10.1016/j.minpro.2012.12.011
    [20]
    馮博, 盧毅屏, 翁存建. 碳酸根對蛇紋石/黃鐵礦浮選體系的分散作用機理. 中南大學學報(自然科學版), 2016, 47(4): 1085 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201604001.htm

    Feng B, Lu Y P, Weng C J. Dispersion mechanism of carbonate on flotation system of serpentine and pyrite. J Central S Univ Sci Technol, 2016, 47(4): 1085 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201604001.htm
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(11)

    Article views (927) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频