<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 2
Feb.  2020
Turn off MathJax
Article Contents
CUI Zhen-nan, LIN Li, ZHU Guo-ming, KANG Yong-lin, LIU Ren-dong, TIAN Peng. Hydroforming performance of DP590/DP780 high-strength steel tube[J]. Chinese Journal of Engineering, 2020, 42(2): 233-241. doi: 10.13374/j.issn2095-9389.2019.01.15.004
Citation: CUI Zhen-nan, LIN Li, ZHU Guo-ming, KANG Yong-lin, LIU Ren-dong, TIAN Peng. Hydroforming performance of DP590/DP780 high-strength steel tube[J]. Chinese Journal of Engineering, 2020, 42(2): 233-241. doi: 10.13374/j.issn2095-9389.2019.01.15.004

Hydroforming performance of DP590/DP780 high-strength steel tube

doi: 10.13374/j.issn2095-9389.2019.01.15.004
More Information
  • In recent years, the automotive industry has become increasingly demanding for the strength of hollow structural parts. To meet the strength and toughness requirements, major automakers have begun to use high-strength steel for the production of automotive hollow structural parts, and the hydroforming process is the most economical way to achieve this purpose. However, studies on the hydroforming process of high-strength steel in the industry are few. To guide the production of high-strength steel hydroformed parts, the deformation behavior of DP590/DP780 high-strength steel welded tube during hydroforming was investigated in this study. The cross section of the circumferential direction of the tube was observed by scanning electron microscopy to determine the microstructure of the base metal. The sizes of the weld and the heat-affected zone of the tube were determined by VMHT30M microhardness tester to study the hydroforming fracture behavior. The deformation behavior of DP590/DP780 high-strength steel welded tube during hydroforming was studied by a tube hydroforming test machine. The experimental results are as follows: the fracture pressure of the tube during the bulging process is larger than the fracture pressure obtained by the theoretical calculation formula, and the rupture position is located in the base metal area near the weld and heat-affected zone. With the increase of the tube diameter and the length-to-diameter ratio, the maximum expansion ratio of the tube exhibits a downward trend. In the process of free bulging, the weld area of the tube is basically not thinned. The position of the minimum thickness is located in the heat-affected zone of the tube and the transition zone of the base body; the wall thickness reduction rate is the largest at the highest point of the bulging region, and the closer to the tube clamping zone, the smaller the wall thickness reduction rate. Finally, the following conclusions can be drawn: the hydroforming experiment of the tube can accurately obtain the mechanical properties of the tube. Improving the welding quality could help to control the failure rupture position. A reasonable selection of the length-to-diameter ratio of the tube is beneficial to the tube overall performance. It is beneficial to reduce the risk of cracking of the hydroformed part by reasonably controlling the thickness reduction rate of each part.

     

  • loading
  • [1]
    黃曉峰, 胡勇, 易成坷, 等. 管狀變截面汽車扭力梁內高壓成形工藝. 精密成形工程, 2018, 10(2):103 doi: 10.3969/j.issn.1674-6457.2018.02.018

    Huang X F, Hu Y, Yi C K, et al. Hydroforming process of tubular variable cross section automotive torsion beam. J Netshape Form Eng, 2018, 10(2): 103 doi: 10.3969/j.issn.1674-6457.2018.02.018
    [2]
    劉曉晶, 楊然, 馮章超, 等. 汽車前副車架內高壓成形工藝研究. 哈爾濱理工大學學報, 2018, 23(2):129

    Liu X J, Yang R, Feng Z C, et al. Research on hydroforming for automobile front sub-frame. J Harbin Univ Sci Technol, 2018, 23(2): 129
    [3]
    苑世劍, 王小松. 內高壓成形技術研究與應用新進展. 塑性工程學報, 2008, 15(2):22

    Yuan S J, Wang X S. Developments in researches and applications of tube hydroforming. J Plast Eng, 2008, 15(2): 22
    [4]
    Sokolowski T, Gerke K, Ahmetoglu M, et al. Evaluation of tube formability and material characteristics: hydraulic bulge testing of tubes. J Mater Process Technol, 2000, 98(1): 34 doi: 10.1016/S0924-0136(99)00303-9
    [5]
    Strano M, Altan T. An inverse energy approach to determine the flow stress of tubular materials for hydroforming applications. J Mater Process Technol, 2004, 146(1): 92 doi: 10.1016/j.jmatprotec.2003.07.016
    [6]
    Velasco R, Boudeau N. Tube bulging test: theoretical analysis and numerical validation. J Mater Process Technol, 2008, 205(1-3): 51 doi: 10.1016/j.jmatprotec.2007.11.106
    [7]
    Saboori M, Champliaud H, Gholipour J, et al. Evaluating the flow stress of aerospace alloys for tube hydroforming process by free expansion testing. Int J Adv Manuf Technol, 2014, 72(9-12): 1275 doi: 10.1007/s00170-014-5670-5
    [8]
    Cui X L, Wang X S, Yuan S J. Deformation analysis of double-sided tube hydroforming in square-section die. J Mater Process Technol, 2014, 214(7): 1341 doi: 10.1016/j.jmatprotec.2014.02.005
    [9]
    He Z B, Yuan S J, Lin Y L, et al. Analytical model for tube hydro-bulging test, part I: models for stress components and bulging zone profile. Int J Mech Sci, 2014, 87: 297 doi: 10.1016/j.ijmecsci.2014.05.009
    [10]
    He Z B, Yuan S J, Lin Y L, et al. Analytical model for tube hydro-bulging tests, part Ⅱ: linear model for pole thickness and its application. Int J Mech Sci, 2014, 87: 307 doi: 10.1016/j.ijmecsci.2014.05.010
    [11]
    Yang L F, Hu G L, Liu J W. Investigation of forming limit diagram for tube hydroforming considering effect of changing strain path. Int J Adv Manuf Technol, 2015, 79(5-8): 793 doi: 10.1007/s00170-015-6842-7
    [12]
    程鵬志, 郎利輝, 葛宇龍, 等. 力約束管材自由脹形試驗研究與材料性能測試. 北京航空航天大學學報, 2015, 41(4):686

    Cheng P Z, Lang L H, Ge Y L, et al. Tube free bulging experiment with force-end and material properties testing. J Beijing Univ Aeron Astron, 2015, 41(4): 686
    [13]
    Ge Y L, Li X X, Lang L H, et al. Optimized design of tube hydroforming loading path using multi-objective differential evolution. Int J Adv Manuf Technol, 2017, 88(1-4): 837 doi: 10.1007/s00170-016-8790-2
    [14]
    Hashemi R, Madoliat R, Afshar A. Prediction of forming limit diagrams using the modified M-K method in hydroforming of aluminum tubes. Int J Mater Form, 2016, 9(3): 297 doi: 10.1007/s12289-014-1207-6
    [15]
    Abdelkefi A, Guermazi N, Boudeau N, et al. Effect of the lubrication between the tube and the die on the corner filling when hydroforming of different cross-sectional shapes. Int J Adv Manuf Technol, 2016, 87(1-4): 1169 doi: 10.1007/s00170-016-8552-1
    [16]
    李坤, 楊連發, 魏軍, 等. 新型管材沖擊液壓成形裝置的設計. 鍛壓技術, 2017, 42(6):77

    Li K, Yang L F, Wei J, et al. Design on a new type of tube impact hydroforming equipment. Forg Stamp Technol, 2017, 42(6): 77
    [17]
    林艷麗, 何祝斌, 初冠南, 等. 利用管狀試樣測試各向異性材料雙向應力狀態力學性能的新方法. 金屬學報, 2017, 53(9):1101 doi: 10.11900/0412.1961.2017.00074

    Lin Y L, He Z B, Chu G N, et al. A new method for directly testing the mechanical properties of anisotropic materials in bi-axial stress state by tube bulging test. Acta Metall Sin, 2017, 53(9): 1101 doi: 10.11900/0412.1961.2017.00074
    [18]
    謝文才, 苑世劍. 低碳鋼薄壁焊管液壓脹形行為. 材料工程, 2017, 45(1):72 doi: 10.11868/j.issn.1001-4381.2015.000312

    Xie W C, Yuan S J. Bulging behavior of thin-walled welded low carbon steel tubes. J Mater Eng, 2017, 45(1): 72 doi: 10.11868/j.issn.1001-4381.2015.000312
    [19]
    苑世劍. 現代液壓成形技術. 北京: 國防工業出版社, 2009

    Yuan S J. Modern Hydroforming Technology. Beijing: National Defense Industry Press, 2009
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(11)  / Tables(5)

    Article views (1626) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频