<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 42 Issue 2
Feb.  2020
Turn off MathJax
Article Contents
JIA Qiao-yan, WANG Bei, WANG Yun, MENG Fan-juan, WANG Qing, ZHANG Lei, YAO Hai-yuan, LU Min-xu, LI Qing-ping. Inhibition effect and mechanism of corrosion inhibitor at oil-water interface region[J]. Chinese Journal of Engineering, 2020, 42(2): 225-232. doi: 10.13374/j.issn2095-9389.2019.01.11.001
Citation: JIA Qiao-yan, WANG Bei, WANG Yun, MENG Fan-juan, WANG Qing, ZHANG Lei, YAO Hai-yuan, LU Min-xu, LI Qing-ping. Inhibition effect and mechanism of corrosion inhibitor at oil-water interface region[J]. Chinese Journal of Engineering, 2020, 42(2): 225-232. doi: 10.13374/j.issn2095-9389.2019.01.11.001

Inhibition effect and mechanism of corrosion inhibitor at oil-water interface region

doi: 10.13374/j.issn2095-9389.2019.01.11.001
More Information
  • Corresponding author: E-mail: zhanglei@ustb.edu.cn
  • Received Date: 2019-01-11
  • Publish Date: 2020-02-01
  • With the development of offshore oil and gas fields, the oil–water two-phase mixing flow-transmission technology has been widely used in subsea pipelines. The high water cut and multiphase flow regime induce harsh and complex corrosion conditions; hence, mild steels combined with corrosion inhibitors are used in the construction of offshore pipelines for corrosion control. However, corrosion failure cases show that severe localized corrosion constantly occurs at the oil–water interface in oil–water mixed transmission pipelines, and the understanding of the mechanism and inhibition effect of corrosion inhibitors is limited. Moreover, laboratory studies on CO2 corrosion problems in oil–water mixed transmission pipelines usually consider only pure-water systems to simulate the corrosive environment. These studies seldom regard the effect of the oil phase on the corrosion process even though the actual production and transportation of fluids often involves multiphase mixed media. The oil phase is one of the important factors that affect corrosion behavior. Studies on the impact of the oil phase on the inhibition effect of corrosion inhibitor are still relatively lacking. Further studies on the inhibition effect of corrosion inhibitor in oily corrosive environments of oil–water mixed transmission pipelines are needed. In this study, the inhibition effect and mechanism of a corrosion inhibitor at the oil–water two-phase interface under flow conditions were investigated using the rotating cylindrical electrode (RCE) technique combined with electrochemical methods (electrochemical impedance spectroscopy and polarization curve analysis), laser scanning confocal microscopy, scanning electron microscopy, and UV-VIS spectrophotometry. The results reveal that 100 mg·L?1 of seventeen alkenyl amide ethyl imidazoline quaternary ammonium salt as a corrosion inhibitor in carbon steel for an aqueous phase of the oil–water two-phase stratified medium exhibits significant inhibition effect, and the corrosion inhibition efficiency reachs 99%. However, the effective mass fraction of the corrosion inhibitor decreases to 31% before mixing at the oil–water interface because of the presence of oil. As a result, the corrosion inhibition efficiency is only 83%, and the inhibition effect is poor; moreover, the corrosion of carbon steels cannot be effectively controlled. Further, significant groove corrosion is observed at the oil–water interface. Therefore, the corrosion of the sample in the oil area is slight, and the inhibitor can effectively inhibit the corrosion of X65 steel in the water area.

     

  • loading
  • [1]
    Wang H W, Hong T, Cai J Y, et al. Enhanced mass transfer and wall shear stress in multiphase slow flow // Corrosion 2002. Denver, 2002: 02501
    [2]
    Cai J Y, Nesic S, de Waard C. Modeling of water wetting in oil-water pipe flow // Corrosion 2004. New Orleans, 2004: 04663
    [3]
    路民旭, 白真權, 趙新偉, 等. 油氣采集儲運中的腐蝕現狀及典型案例. 腐蝕與防護, 2002, 23(3):105 doi: 10.3969/j.issn.1005-748X.2002.03.005

    Lu M X, Bai Z Q, Zhao X W, et al. Actuality and typical cases for corrosion in the process of extraction, gathering, storage and transmission for oil and gas. Corros Prot, 2002, 23(3): 105 doi: 10.3969/j.issn.1005-748X.2002.03.005
    [4]
    Palacios C A, Shadley J R. CO2 corrosion of N-80 steel at 71 ℃ in a two-phase flow system. Corrosion, 1993, 49(8): 686 doi: 10.5006/1.3316101
    [5]
    Kang C, Gopal M, Jepson W P. Localized corrosion in multiphase pipelines // Corrosion 2004. New Orleans, 2004: 04381
    [6]
    李自力, 程遠鵬, 畢海勝, 等. 油氣田CO2/H2S共存腐蝕與緩蝕技術研究進展. 化工學報, 2014, 65(2):406 doi: 10.3969/j.issn.0438-1157.2014.02.006

    Li Z L, Cheng Y F, Bi H S, et al. Research progress of CO2/H2S corrosion and inhibitor techniques in oil and gas fields. CIESC J, 2014, 65(2): 406 doi: 10.3969/j.issn.0438-1157.2014.02.006
    [7]
    Nesic S, Wang S H, Cai J Y, et al. Integrated CO2 corrosion-multiphase flow model // SPE International Symposium on Oilfield Corrosion. Aberdeen, 2004: SPE-87555-MS
    [8]
    Zhang J X, Kang J, Fan J C, et al. Study on erosion wear of fracturing pipeline under the action of multiphase flow in oil & gas industry. J Nat Gas Sci Eng, 2016, 32: 334 doi: 10.1016/j.jngse.2016.04.056
    [9]
    程遠鵬, 白羽, 李自力, 等. 集輸管道CO2/油/水環境中X65鋼的腐蝕特征. 工程科學學報, 2018, 40(5):594

    Cheng Y P, Bai Y, Li Z L, et al. Corrosion characteristics of X65 steel in CO2/oil /water environment of gathering pipeline. Chin J Eng, 2018, 40(5): 594
    [10]
    Goyal M, Kumar S, Bahadur I, et al. Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: a review. J Molecular Liquids, 2018, 256: 565 doi: 10.1016/j.molliq.2018.02.045
    [11]
    Choi H, Tonsuwannarat T. Unique roles of hydrocarbons in flow-induced sweet corrosion of X-52 carbon steel in wet gas condensate producing wells // Corrosion 2002. Denver, 2002: 02559
    [12]
    Choi H J. Effect of liquid hydrocarbons on flow-induced sweet corrosion of carbon steel // Corrosion 2004. New Orleans, 2004: 04664
    [13]
    劉小武, 鄭家燊. 少量柴油對鹽水介質中碳鋼腐蝕的影響. 材料保護, 1999, 32(1):1 doi: 10.3969/j.issn.1001-1560.1999.01.001

    Liu X W, Zheng J S. Effects of a small amount of diesel fuel oil on corrosion of carbon steel in brine medium. Mater Prot, 1999, 32(1): 1 doi: 10.3969/j.issn.1001-1560.1999.01.001
    [14]
    劉小武, 彭芳明, 俞敦義, 等. 輸油管線緩蝕劑的研究. 材料保護, 2000, 33(8):3 doi: 10.3969/j.issn.1001-1560.2000.08.002

    Liu X W, Peng F M, Yu D Y, et al. Corrosion inhibitor for oil pipeline. Mater Prot, 2000, 33(8): 3 doi: 10.3969/j.issn.1001-1560.2000.08.002
    [15]
    趙景茂, 李玉龍, 谷豐, 等. H2S/CO2腐蝕環境中原油對緩蝕劑緩蝕性能的影響. 腐蝕科學與防護技術, 2016, 28(5):423

    Zhao J M, Li Y L, Gu F, et al. Influence of crude oil on inhibition performance of corrosion inhibitors in H2S/CO2 containing brines. Corros Sci Prot Technol, 2016, 28(5): 423
    [16]
    劉烈煒, 趙小蓉, 胡倩. 油水兩相共存下咪唑啉緩蝕劑的緩蝕效率. 油氣田地面工程, 2001, 20(1):25 doi: 10.3969/j.issn.1006-6896.2001.01.015

    Liu L W, Zhao X R, Hu Q. Study on corrosion inhibiting efficiency of imidazoline corrosion inhibitor in oil-water coexistence condition. Oil-Gasfield Surf Eng, 2001, 20(1): 25 doi: 10.3969/j.issn.1006-6896.2001.01.015
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article views (1731) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频