<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 1
Jan.  2019
Turn off MathJax
Article Contents
QIAN Ling-yun, WANG Meng-qi, SUN Chao-yang, WANG Xiao-can. Simultaneous extrusion process of primary pipe with two asymmetrical branches[J]. Chinese Journal of Engineering, 2019, 41(1): 124-133. doi: 10.13374/j.issn2095-9389.2019.01.014
Citation: QIAN Ling-yun, WANG Meng-qi, SUN Chao-yang, WANG Xiao-can. Simultaneous extrusion process of primary pipe with two asymmetrical branches[J]. Chinese Journal of Engineering, 2019, 41(1): 124-133. doi: 10.13374/j.issn2095-9389.2019.01.014

Simultaneous extrusion process of primary pipe with two asymmetrical branches

doi: 10.13374/j.issn2095-9389.2019.01.014
More Information
  • Corresponding author: SUN Chao-yang, E-mail: suncy@ustb.edu.cn
  • Received Date: 2018-06-12
  • Publish Date: 2019-01-01
  • The primary pipe is a critical equipment that ensures the safe operation in a nuclear island, therefore; the primary pipe must have extremely high service performance in complex environments characterized by high pressure, temperature, and/or radiation. In addition, generation Ⅲ AP1000 nuclear power plants require a service life of 60 years, which pose great challenges to traditional manufacturing processes, such as casting and section-forging methods with partial welding. The currently popular free-forging method can enhance the resulting properties, but the repeated heating during multiple passes induce coarse grains, and these coarse grains are difficult to refine at key positions. With the rapid development of extrusion devices and optimized extrusion processes, the hot extrusion approach promises to produce primary pipes using a near-net shaping method. However, the huge size and complex shape of the two asymmetrical branches of the primary pipe brings enormous difficulties to the ordinary extrusion process. In this study, a novel simultaneous extrusion process was proposed, wherein a primary pipe with two asymmetrical branches is produced on a uniaxial extrusion press platform with the additional effect of a moving elevating ram. In this study, the principle underlying the simultaneous formation process was first analyzed with respect to the material flow during the extrusion process. The relations between the top-mandrel speed, lift cylinder speed, and branch size were derived to ensure the conditions necessary for the simultaneous formation of the two branches. Next, a finite element model of the proposed primary pipe extrusion process was constructed and the results verified its feasibility. The superiority of this process in preventing shear fracture at the branch root was evaluated by comparing its formation quality with that of traditional unidirectional extrusion. Finally, the influences of billet temperature, extrusion speed, and friction condition on the formation quality were studied to minimize the deformation load, refine the grain, and improve the homogeneity of the microstructure. The results of this research provide a method for reference and an analytical foundation for further development of practical approaches to the formation of primary pipes.

     

  • loading
  • [1]
    潘品李, 鐘約先, 馬慶賢, 等. 大型核電主管道制造技術的發展. 鍛壓裝備與制造技術, 2011, 46(1): 13 doi: 10.3969/j.issn.1672-0121.2011.01.002

    Pan P L, Zhong Y X, Ma Q X, et al. Development of manufacture technology for main pipe of large-sized nuclear power. China Metal form Equip Manuf Technol, 2011, 46(1): 13 doi: 10.3969/j.issn.1672-0121.2011.01.002
    [2]
    盧華興. AP1000核電站主管道國產化研制進展. 上海金屬, 2010, 32(4): 29 doi: 10.3969/j.issn.1001-7208.2010.04.008

    Lu H X. Research and development of AP1000 reactor coolant pipe in China. Shanghai Met, 2010, 32(4): 29 doi: 10.3969/j.issn.1001-7208.2010.04.008
    [3]
    張磊, 馮瀟, 李明權, 等. 核電主管道制造工藝發展. 鍛壓技術, 2014, 39(6): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-DYJE201406001.htm

    Zhang L, Feng X, Li M Q, et al. Development of nuclear power main-pipe manufacturing technology. Forg Stamp Technol, 2014, 39(6): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-DYJE201406001.htm
    [4]
    孫立明, 彭先寬, 郭磊, 等. 核電站用超級管道管嘴的熱擠壓成形工藝研究. 鍛壓技術, 2014, 39(12): 48 https://www.cnki.com.cn/Article/CJFDTOTAL-DYJE201409012.htm

    Sun L M, Peng X K, Guo L, et al. Research on the hot extrusion forming technology of super-pipe nozzles used in nuclear power station. Forg Stamp Technol, 2014, 39(12): 48 https://www.cnki.com.cn/Article/CJFDTOTAL-DYJE201409012.htm
    [5]
    孫鳳先, 馬慶賢. AP1000主管道控制鍛造工藝探索. 大型鑄鍛件, 2010(4): 30 doi: 10.3969/j.issn.1004-5635.2010.04.010

    Sun F X, Ma Q X. Research on the control forging processes for AP1000 main pipe. Heavy Cast Forg, 2010(4): 30 doi: 10.3969/j.issn.1004-5635.2010.04.010
    [6]
    祥雨. AP1000核電主管道帶不對稱雙側枝實心坯料擠壓工藝研究[學位論文]. 北京: 北京科技大學, 2016

    Xiang Y. The Combined Lateral and Axial Extrusion Process of A Branched Component with Two Asymmetrically Radial Features for AP1000 Promary Pipe[Dissertation]. Beijing: University of Science and Technology Beijing, 2016
    [7]
    王欣, 張磊, 馮瀟, 等. AP1000核電主管道支管嘴徑向鐓擠模具設計及應力分析. 鍛壓技術, 2015, 40(10): 96 https://www.cnki.com.cn/Article/CJFDTOTAL-DYJE201510029.htm

    Wang X, Zhang L, Feng X, et al. Radial upset-extruding die design and stress analysis on branch pipe of nuclear power AP1000 main-pipe. Forg Stamp Technol, 2015, 40(10): 96 https://www.cnki.com.cn/Article/CJFDTOTAL-DYJE201510029.htm
    [8]
    Sun C Y, Xiang Y, Fu M W, et al. The combined lateral and axial extrusion process of a branched component with two asymmetrically radial features. Mater Des, 2016, 111: 492 doi: 10.1016/j.matdes.2016.09.008
    [9]
    Wang S L, Zhang M X, Wu H C, et al. Study on the dynamic recrystallization model and mechanism of nuclear grade 316LN austenitic stainless steel. Mater Charact, 2016, 118: 92 doi: 10.1016/j.matchar.2016.05.015
    [10]
    孫朝陽, 李亞民, 祥雨, 等. 316LN高溫熱變形行為與熱加工圖研究. 稀有金屬材料與工程, 2016, 45(3): 688 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201603028.htm

    Sun C Y, Li Y M, Xiang Y, et al. Hot deformation behavior and hot processing maps of 316LN stainless steel. Rare Met Mater Eng, 2016, 45(3): 688 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201603028.htm
    [11]
    張佩佩, 隋大山, 齊珂, 等. 316LN鋼高溫流動應力與動態再結晶模型. 塑性工程學報, 2014, 21(1): 44 doi: 10.3969/j.issn.1007-2012.2014.01.009

    Zhang P P, Sui D S, Qi K, et al. Modeling of flow stress and dynamic recrystallization for 316LN steel during hot deformation. J Plast Eng, 2014, 21(1): 44 doi: 10.3969/j.issn.1007-2012.2014.01.009
    [12]
    Wang S L, Yang B, Zhang M X, et al. Numerical simulation and experimental verification of microstructure evolution in large forged pipe used for AP1000 nuclear power plants. Ann Nucl Energy, 2016, 87: 176 doi: 10.1016/j.anucene.2015.07.042
    [13]
    程眉. 304不銹鋼閥體多向溫擠壓成形研究[學位論文]. 太原: 中北大學, 2013

    Cheng M. Research of Stainless Steel 340 Triple-Valve Body Multidirectional Extrusion Deformation[Dissertation]. Taiyuan: North University of China, 2013
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(12)

    Article views (735) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频