<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 1
Jan.  2019
Turn off MathJax
Article Contents
WANG Ying, LI Xiao-qian, LI Rui-qing, TIAN Yang. Fine grain mechanism of ultrasonic vibration depth in large diameter aluminum ingot hot-top casting[J]. Chinese Journal of Engineering, 2019, 41(1): 96-103. doi: 10.13374/j.issn2095-9389.2019.01.010
Citation: WANG Ying, LI Xiao-qian, LI Rui-qing, TIAN Yang. Fine grain mechanism of ultrasonic vibration depth in large diameter aluminum ingot hot-top casting[J]. Chinese Journal of Engineering, 2019, 41(1): 96-103. doi: 10.13374/j.issn2095-9389.2019.01.010

Fine grain mechanism of ultrasonic vibration depth in large diameter aluminum ingot hot-top casting

doi: 10.13374/j.issn2095-9389.2019.01.010
More Information
  • Corresponding author: LI Rui-qing, E-mail: lll87430@126.com
  • Received Date: 2017-12-07
  • Publish Date: 2019-01-01
  • With the development of the aerospace industry and the need for industrialized production, the casting processes of large diameter aluminum alloy ingot have come into focus in the industry. Among them, ultrasonic-assisted casting technology is widely used. Ultrasonic-assisted casting technology has the advantages of improving solute segregation of ingot and refining solidification organization. Other advantages have been widely reported. At present, most of the aluminum ingots used in the non-hot top ultrasonic casting process with very shallow liquid cavities, while the casting process does not involve the issue of ultrasonic vibration depth. With the use of a hot-top mold for ultrasound in the casting and casting process of large diameter ingot, the liquid level of aluminum melt is very high. The ultrasonic vibration depth will affect the cavitation range and finally affect the fine grain effect of the ingot. In the present study, a double source ultrasonic vibration system was applied in the process of semi-continuous casting of aluminum alloy with a diameter of 650 mm, and the influence of ultrasonic immersion depth on the macroscopic solidification structure of ingot was studied. Based on the test results of the solidified microstructure of aluminum alloy ingot and the simulation results of the sound field of the finite element software such as ANSYS, the mechanism of the microstructure refinement of the aluminum alloy ingot under different vibration depths was discussed at length. Study results show that, with increasing vibrational depth of the supersonic radiation rod, the whole cross section of the ingot is further refined, and grain shape changs from developed dendrites to equiaxed dendrites. Because of the end faces of the ultrasonic radiation rod, there is a vibrational peak at the fixed position, which leads to different ultrasonic cavities under different ultrasonic vibrational depths in the aluminum melt. This leads to different refinement mechanisms of the solidified structure.

     

  • loading
  • [1]
    Wang F, Eskin D, Connolley T, et al. Effect of ultrasonic melt treatment on the refinement of primary Al3Ti intermetallic in an Al-0.4Ti alloy. J Cryst Growth, 2016, 435: 24 doi: 10.1016/j.jcrysgro.2015.11.034
    [2]
    Moholkar V S, Rekveld S, Warmoeskerken M M C G. Modeling of the acoustic pressure fields and the distribution of the cavitation phenomena in a dual frequency sonic processor. Ultrasonics, 2000, 38(1-8): 666 doi: 10.1016/S0041-624X(99)00204-8
    [3]
    Li X T, Li T J, Li X M, et al. Study of ultrasonic melt treatment on the quality of horizontal continuously cast Al-1%Si alloy. Ultrason Sonochem, 2006, 13(2): 121 doi: 10.1016/j.ultsonch.2005.08.005
    [4]
    Eskin G I. Effect of ultrasonic (cavitation) treatment of the melt on the microstructure evolution during solidification of aluminum alloy ingots. Z Metallkd, 2002, 93(6): 502 doi: 10.3139/146.020502
    [5]
    Komarov S V, Kuwabara M, Abramov O V. High power ultrasonic in pyrometallurgy: current status and recent development. ISIJ Int, 2005, 45(12): 1765 doi: 10.2355/isijinternational.45.1765
    [6]
    陳鼎欣, 李曉謙, 黎正華, 等. 超聲鑄造7050鋁合金的微觀組織和宏觀偏析規律. 北京科技大學學報, 2012, 34(6): 666 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201206010.htm

    Chen D X, Li X Q, Li Z H, et al. Microstructure and macro-segregation law of ultrasonic cast 7050 aluminum alloy ingots. J Univ Sci Technol Beijing, 2012, 34(6): 666 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201206010.htm
    [7]
    黎正華, 李曉謙, 胡仕成, 等. 熔體超聲處理對7050鋁合金鑄錠宏觀偏析的影響. 中南大學學報(自然科學版), 2011, 42(9): 2669 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201109023.htm

    Li Z H, Li X Q, Hu S C, et al. Effect of 7050 aluminum alloy melt treated by ultrasonic on macrosegregation in ingot. J Cent South Univ Sci Technol, 2011, 42(9): 2669 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201109023.htm
    [8]
    Li R Q, Liu Z L, Dong F, et al. Grain refinement of a large-scale Al alloy casting by introducing the multiple ultrasonic generators during solidification. Metall Mater Trans A, 2016, 47(8): 3790 doi: 10.1007/s11661-016-3576-6
    [9]
    Tudela I, Sáez V, Esclapez M D, et al. Simulation of the spatial distribution of the acoustic pressure in sonochemical reactors with numerical methods: a review. Ultrason Sonochem, 2014, 21(3): 909 doi: 10.1016/j.ultsonch.2013.11.012
    [10]
    Eskin G I. Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys. Ultrason Sonochem, 2001, 8(3): 319 doi: 10.1016/S1350-4177(00)00074-2
    [11]
    Liu X B, Osawa Y, Takamori S, et al. Microstructure and mechanical properties of AZ91 alloy produced with ultrasonic vibration. Mater Sci Eng A, 2008, 487(1-2): 120 doi: 10.1016/j.msea.2007.09.071
    [12]
    Eskin G I. Principles of ultrasonic treatment: application for light alloys melts. Adv Perform Mater, 1997, 4(2): 223 doi: 10.1023/A:1008603815525
    [13]
    Nie M X. Cavitation prevention with roughened surface. J Hydraul Eng, 2015, 127(10): 878
    [14]
    Doyle W M. Aluminum alloys: structure and properties. Met Sci, 1976, 35(11): 408
    [15]
    李新濤, 趙建強, 寧紹斌, 等. 功率超聲對水平連鑄Al-1%Si合金凝固的影響. 稀有金屬材料與工程, 2006, 35(增刊2): 284 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE2006S2070.htm

    Li X T, Zhao J Q, Ning S B, et al. Effect of high-intensity ultrasonic on the solidification of Al-1%Si alloy by horizontally continuous cast. Rare Met Mater Eng, 2006, 35(Suppl 2): 284 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE2006S2070.htm
    [16]
    范曉明. 金屬凝固理論與技術. 武漢: 武漢理工大學出版社, 2012

    Fan X M. Metal Solidification Theory and Technology. Wuhan: Wuhan University of Technology Press, 2012
    [17]
    徐婷, 張立華, 李瑞卿, 等. 鋁合金大鑄錠超聲半連鑄多場耦合的數值模擬與實驗研究. 工程科學學報, 2016, 38(9): 1270 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201609011.htm

    Xu T, Zhang L H, Li R Q, et al. Numerical simulation and experimental study of multi-field coupling for semi-continuous casting of large-scale aluminum ingots with ultrasonic treatment. Chin J Eng, 2016, 38(9): 1270 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201609011.htm
    [18]
    Dong F, Li X Q, Zhang L H, et al. Cavitation erosion mechanism of titanium alloy radiation rods in aluminum melt. Ultrason Sonochem, 2016, 31: 150 doi: 10.1016/j.ultsonch.2015.12.009
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)

    Article views (1097) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频