Citation: | AN Fu-qiang, ZHAO Hong-liang, CHENG Zhi, QIU JI Yi-cheng, ZHOU Wei-nan, LI Ping. Development status and research progress of power battery for pure electric vehicles[J]. Chinese Journal of Engineering, 2019, 41(1): 22-42. doi: 10.13374/j.issn2095-9389.2019.01.003 |
[1] |
安富強, 其魯, 王劍, 等. 電動汽車用動力鋰離子二次電池系統性能的研究. 北京大學學報(自然科學版), 2011, 47(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201101002.htm
An F Q, Qi L, Wang J, et al. Studies on power Li-ion secondary battery system for EV and HEV. Acta Sci Nat Univ Pek, 2011, 47(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201101002.htm
|
[2] |
Gallagher K G, Trask S E, Bauer C, et al. Optimizing areal capacities through understanding the limitations of lithium-ion electrodes. J Electrochem Soc, 2016, 163(2): A138 doi: 10.1149/2.0321602jes
|
[3] |
Nitta N, Wu F X, Lee J T, et al. Li-ion battery materials: present and future. Mater Today, 2015, 18(5): 252 doi: 10.1016/j.mattod.2014.10.040
|
[4] |
Mizushima K, Jones P C, Wiseman P J, et al. LixCoO2 (0 < x < -1): a new cathode material for batteries of high energy density. Solid State Ionics, 1980, 15(6): 783
|
[5] |
Ohzuku T, Ueda A, Nagayama M. Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 volt secondary lithium cells. J Electrochem Soc, 1993, 140(7): 1862 doi: 10.1149/1.2220730
|
[6] |
Bruce P G, Robert Armstrong A, Gitzendanner R L. New intercalation compounds for lithium batteries: layered LiMnO2. J Mater Chem, 1999, 9(1): 193 doi: 10.1039/a803938k
|
[7] |
Meng Y S, Arroyo-de Dompablo M E. Recent advances in first principles computational research of cathode materials for lithium-ion batteries. Acc Chem Res, 2013, 46(5): 1171 doi: 10.1021/ar2002396
|
[8] |
Liu Z L, Yu A S, Lee J Y. Synthesis and characterization of LiNi1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries. J Power Sources, 1999, 81-82: 416 doi: 10.1016/S0378-7753(99)00221-9
|
[9] |
邵奕嘉, 黃斌, 劉全兵, 等. 三元鎳鈷錳正極材料的制備及改性. 化學進展, 2018, 30(4): 410 https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201804007.htm
Shao Y J, Huang B, Liu Q B, et al. Preparation and modification of Ni-Co-Mn ternary cathode materials. Prog Chem, 2018, 30(4): 410 https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201804007.htm
|
[10] |
Noh H J, Youn S, Yoon C S, et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources, 2013, 233: 121
|
[11] |
曹勇, 嚴長青, 王義飛, 等. 高安全高比能量動力鋰離子電池系統路線探索. 儲能科學與技術, 2018, 7(3): 384 https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX201803003.htm
Cao Y, Yan C C, Wang Y F, et al. The technical route exploration of lithium ion battery with high safety and high energy density. Energy Stor Sci Technol, 2018, 7(3): 384 https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX201803003.htm
|
[12] |
劉磊, 包珊珊, 何歡, 等. 鋰離子電池富鎳三元正極材料研究進展. 電子元件與材料, 2017, 36(12): 58 https://www.cnki.com.cn/Article/CJFDTOTAL-DZAL201712012.htm
Liu L, Bao S S, He H, et al. Research progress of Ni-rich ternary cathode materials for lithium ion batteries. Electron Compon Mater, 2017, 36(12): 58 https://www.cnki.com.cn/Article/CJFDTOTAL-DZAL201712012.htm
|
[13] |
Cho D H, Jo C H, Cho W, et al. Effect of residual lithium compounds on layer Ni-rich Li[Ni0.7Mn0.3]O2. J Electrochem Soc, 2014, 161(6): A920 doi: 10.1149/2.042406jes
|
[14] |
翟彥武, 張繼成, 趙虎, 等. 鋰離子電池三元層狀氧化物正極材料的研究進展. 工程研究-跨學科視野中的工程, 2017, 9(6): 523 https://www.cnki.com.cn/Article/CJFDTOTAL-GCKG201706001.htm
Zhai Y W, Zhang J C, Zhao H, et al. Research progress of ternary layered oxide cathode materials for lithium ion batteries. J Eng Stud, 2017, 9(6): 523 https://www.cnki.com.cn/Article/CJFDTOTAL-GCKG201706001.htm
|
[15] |
Fu C Y, Zhou Z L, Liu Y H, et al. Synthesis and electrochemical properties of Mg-doped LiNi0.6Co0.2Mn0.2O2 cathode materials for Li-ion battery. J Wuhan Univ Technol-Mater Sci Ed, 2011, 26(2): 211 doi: 10.1007/s11595-011-0199-z
|
[16] |
Ding Y H, Zhang P, Long Z L, et al. Morphology and electrochemical properties of Al doped LiNi1/3Co1/3Mn1/3O2 nanofibers prepared by electrospinning. J Alloys Compd, 2009, 487(1-2): 507 doi: 10.1016/j.jallcom.2009.08.002
|
[17] |
Kam K C, Mehta A, Heron J T, et al. Electrochemical and physical properties of Ti-substituted layered nickel manganese cobalt oxide (NMC) cathode materials. J Electrochem Soc, 2012, 159(8): A1383 doi: 10.1149/2.060208jes
|
[18] |
Woo S U, Park B C, Yoon C S, et al. Improvement of electrochemical performances of LiNi0.8Co0.1Mn0.1O2 cathode materials by Fluorine substitution. J Electrochem Soc, 2007, 154(7): A649 doi: 10.1149/1.2735916
|
[19] |
Yan J, Yuan W, Tang Z Y, et al. Synthesis and electrochemical performance of Li3V2(P04)3-xClx/C cathode materials for lithium-ion batteries. J Power Sources, 2012, 209: 251 doi: 10.1016/j.jpowsour.2012.02.110
|
[20] |
Huang Y D, Jiang R R, Jia D Z, et al. Preparation, microstructure and electrochemical performance of nanoparticles LiMn2O3.9Br0.1. Mater Lett, 2011, 65(23-24): 3486 doi: 10.1016/j.matlet.2011.07.091
|
[21] |
Woo S W, Myung S T, Bang H, et al. Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal (Al, Mg) substitution. Electrochim Acta, 2009, 54(15): 3851 doi: 10.1016/j.electacta.2009.01.048
|
[22] |
Shin H S, Shin D, Sun Y K. Improvement of electrochemical properties of Li[Ni0.4Co0.2Mn(0.4-x)Mgx]O2-yFy cathode materials at high voltage region. Electrochim Acta, 2006, 52(4): 1477 doi: 10.1016/j.electacta.2006.02.048
|
[23] |
Dong M X, Wang Z X, Li H K, et al. Metallurgy inspired formation of homogeneous Al2O3 coating layer to improve the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 Cathode Material. ACS Sustainable Chem Eng, 2017, 5(11): 10199 doi: 10.1021/acssuschemeng.7b02178
|
[24] |
Cho J, Kim T J, Kim Y J, et al. High-performance ZrO2-coated LiNiO2 cathode material. Electrochem Solid-State Lett, 2001, 4(10): A159 doi: 10.1149/1.1398556
|
[25] |
Kweon H J, Kim S J, Park D G. Modification of LixNi1·yCoyO2 by applying a surface coating of MgO. J Power Sources, 2000, 88(2): 255 doi: 10.1016/S0378-7753(00)00368-2
|
[26] |
Ying J R, Wan C R, Jiang C Y. Surface treatment of LiNi0.8Co0.2O2 cathode material for lithium secondary batteries. J Power Sources, 2001, 102(1-2): 162 doi: 10.1016/S0378-7753(01)00795-9
|
[27] |
Zhang J C, Zhang H, Gao R, et al. New insights into the modification mechanism of Li-rich Li1.2Mn0.6Ni0.2O2 coated by Li2ZrO3. Phys Chem Chem Phys, 2016, 18(19): 13322 doi: 10.1039/C6CP01366J
|
[28] |
Liu S J, Wu H, Huang L, et al. Synthesis of Li2Si2O5-coated LiNi0.6Co0.2Mn0.2O2 cathode materials with enhanced high-voltage electrochemical properties for lithium-ion batteries. J Alloys Compd, 2016, 674: 447 doi: 10.1016/j.jallcom.2016.03.060
|
[29] |
Sun Y K, Myung S T, Kim M H, et al. Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries. J Am Chem Soc, 2005, 127(38): 13411 doi: 10.1021/ja053675g
|
[30] |
Koenig Jr G M, Belharouak I, Deng H X, et al. Composition-tailored synthesis of gradient transition metal precursor particles for lithium-ion battery cathode materials. Chem Mater, 2011, 23(7): 1954 doi: 10.1021/cm200058c
|
[31] |
肖建偉, 劉良彬, 符澤衛, 等. 單晶LiNixCOyMn1-x-yO2三元正極材料研究進展. 電池工業, 2017, 21(2): 51 doi: 10.3969/j.issn.1008-7923.2017.02.013
Xiao J W, Liu L B, Fu Z W, et al. Research progress in the single crystal LiNixCoyMn1-x-yO2 ternary cathode materials. Chin Battery Ind, 2017, 21(2): 51 doi: 10.3969/j.issn.1008-7923.2017.02.013
|
[32] |
Li J, Cameron A R, Li H Y, et al. Comparison of single crystal and polycrystalline LiNi0.5Mn0.3Co0.2O2 positive electrode materials for high voltage Li-ion cells. J Electrochem Soc, 2017, 164(7): A1534 doi: 10.1149/2.0991707jes
|
[33] |
Kim J, Lee H, Cha H, et al. Prospect and reality of Ni-rich cathode for commercialization. Adv Energy Mater, 2017, 8(6): 1702028 doi: 10.1002/aenm.201702028
|
[34] |
Kim Y. Lithium nickel cobalt manganese oxide synthesized using alkali chloride flux: morphology and performance as a cathode material for lithium ion batteries. ACS Appl Mater Interfaces, 2012, 4(5): 2329 doi: 10.1021/am300386j
|
[35] |
Sun Y M, Zheng G Y, Seh Z W, et al. Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries. Chem, 2016, 1(2): 287 doi: 10.1016/j.chempr.2016.07.009
|
[36] |
Dash R, Pannala S. Theoretical limits of energy density in silicon-carbon composite anode based lithium ion batteries. Sci Rep, 2016, 6: 27449 doi: 10.1038/srep27449
|
[37] |
Jo Y N, Kim Y, Kim J S, et al. Si-graphite composites as anode materials for lithium secondary batteries. J Power Sources, 2010, 195(18): 6031 doi: 10.1016/j.jpowsour.2010.03.008
|
[38] |
Lee J H, Kim W J, Kim J Y, et al. Spherical silicon/graphite/carbon composites as anode material for lithium-ion batteries. J Power Sources, 2008, 176(1): 353 doi: 10.1016/j.jpowsour.2007.09.119
|
[39] |
Ma C L, Ma C, Wang J Z, et al. Exfoliated graphite as a flexible and conductive support for Si-based Li-ion battery anodes. Carbon, 2014, 72: 38 doi: 10.1016/j.carbon.2014.01.027
|
[40] |
Sun Q, Zhang B, Fu Z W. Lithium electrochemistry of SiO2 thin film electrode for lithium-ion batteries. Appl Surf Sci, 2008, 254(13): 3774 doi: 10.1016/j.apsusc.2007.11.058
|
[41] |
Philippe B, Dedryvère R, Allouche J, et al. Nanosilicon electrodes for lithium-ion batteries: interfacial mechanisms studied by hard and soft X-ray photoelectron spectroscopy. Chem Mater, 2012, 24(6): 1107 doi: 10.1021/cm2034195
|
[42] |
Kim H J, Choi S, Lee S J, et al. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Lett, 2016, 16(1): 282 doi: 10.1021/acs.nanolett.5b03776
|
[43] |
Li X M, Kersey-Bronec F E, Ke J, et al. Study of lithium silicide nanoparticles as anode materials for advanced lithium ion batteries. ACS Appl Mater Interfaces, 2017, 9(19): 16071 doi: 10.1021/acsami.6b16773
|
[44] |
Zhao J, Lu Z D, Wang H T, et al. Artificial solid electrolyte interphase-protected LixSi nanoparticles: an efficient and stable prelithiation reagent for lithium-ion batteries. J Am Chem Soc, 2015, 137(26): 8372 doi: 10.1021/jacs.5b04526
|
[45] |
Zhao H, Wang Z H, Lu P, et al. Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design. Nano Lett, 2014, 14(11): 6704 doi: 10.1021/nl503490h
|
[46] |
Su H P, Barragan A A, Geng L X, et al. Colloidal synthesis of silicon-carbon composite materials for lithium-ion batteries. Angew Chem, 2017, 129(36): 10920 doi: 10.1002/ange.201705200
|
[47] |
Palomino J, Varshney D, Weiner B R, et al. Study of the structural changes undergone by hybrid nanostructured Si-CNTs employed as an anode material in a rechargeable lithium-ion battery. J Phys Chem C, 2015, 119(36): 21125 doi: 10.1021/acs.jpcc.5b01178
|
[48] |
Wang Y D, Jiang J W, Dahn J R. The reactivity of delithiated Li(Ni1/3Co1/3Mn1/3)O2, Li(Ni0.8Co0.15Al0.05)O2 or LiCoO2 with non-aqueous electrolyte. Electrochem Commun, 2007, 9(10): 2534 doi: 10.1016/j.elecom.2007.07.033
|
[49] |
王子珩. 團聚體堆疊型多孔電極模型構建與應用[學位論文]. 北京: 清華大學, 2017
Wang Z H. Modeling of Porous Electrode Using Stacked-Agglomerates[Dissertation]. Beijing: Tsinghua University, 2017
|
[50] |
Chen Y H, Wang C W, Zhang X, et al. Porous cathode optimization for lithium cells: ionic and electronic conductivity, capacity, and selection of materials. J Power Sources, 2010, 195(9): 2851 doi: 10.1016/j.jpowsour.2009.11.044
|
[51] |
Yu S, Chung Y, Song M S, et al. Investigation of design parameter effects on high current performance of lithium-ion cells with LiFePO4/graphite electrodes. J Appl Electrochem, 2012, 42(6): 443 doi: 10.1007/s10800-012-0418-0
|
[52] |
Appiah W A, Park J, Song S, et al. Design optimization of LiNi0.6Co0.2Mn0.2O2/graphite lithium-ion cells based on simulation and experimental data. J Power Sources, 2016, 319: 147 doi: 10.1016/j.jpowsour.2016.04.052
|
[53] |
De S, Northrop P W C, Ramadesigan V, et al. Model-based simultaneous optimization of multiple design parameters for lithium-ion batteries for maximization of energy density. J Power Sources, 2013, 227: 161 doi: 10.1016/j.jpowsour.2012.11.035
|
[54] |
Xue N S, Du W B, Gupta A, et al. Optimization of a single lithium-ion battery cell with a gradient-based algorithm. J Electrochem Soc, 2013, 160(8): A1071 doi: 10.1149/2.036308jes
|
[55] |
Golmon S, Maute K, Dunn M L. Multiscale design optimization of lithium ion batteries using adjoint sensitivity analysis. Int J Numer Methods Eng, 2012, 92(5): 475 doi: 10.1002/nme.4347
|
[56] |
孟凡偉. 鋰離子電池的相關設計與性能研究[學位論文]. 北京: 北京理工大學, 2015
Meng F W. Studies on the Design and Performance of Lithium Ion Battery[Dissertation]. Beijing: Beijing Institute of Technology, 2015
|
[57] |
李平, 安富強, 張劍波, 等. 電動汽車用鋰離子電池的溫度敏感性研究綜述. 汽車安全與節能學報, 2014, 5(3): 224 doi: 10.3969/j.issn.1674-8484.2014.03.002
Li P, An F Q, Zhang J B, et al. Temperature sensitivity of lithium-ion battery: a review. J Autom Saf Energy, 2014, 5(3): 224 doi: 10.3969/j.issn.1674-8484.2014.03.002
|
[58] |
張劍波, 李哲, 吳彬. 鋰離子電池結構設計理論與應用. 北京: 中國科學技術出版社, 2016
Zhang J B, Li Z, Wu B. The Structure Design Theory and Application of Lithium-Ion Battery. Beijing: Science and Technology of China Press, 2016
|
[59] |
Al-Hallaj S, Selman J R. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications. J Power Sources, 2002, 110(2): 341 doi: 10.1016/S0378-7753(02)00196-9
|
[60] |
Chen S C, Wang Y Y, Wan C C. Thermal analysis of spirally wound lithium batteries. J Electrochem Soc, 2006, 153(4): A637 doi: 10.1149/1.2168051
|
[61] |
Kim U S, Shin C B, Kim C S. Effect of electrode configuration on the thermal behavior of a lithium-polymer battery. J Power Sources, 2008, 180(2): 909 doi: 10.1016/j.jpowsour.2007.09.054
|
[62] |
吳彬. 鋰離子動力電池熱設計方法研究[學位論文]. 北京: 清華大學, 2015
Wu B. Thermal Design Methodology for Traction Lithium-Ion Batteries [Dissertation]. Beijing: Tsinghua University, 2015
|
[63] |
Inui Y, Kobayashi Y, Watanabe Y, et al. Simulation of temperature distribution in cylindrical and prismatic lithium ion secondary batteries. Energy Convers Manage, 2007, 48(7): 2103 doi: 10.1016/j.enconman.2006.12.012
|
[64] |
Zhao W, Luo G, Wang C Y. Effect of tab design on large-format Li-ion cell performance. J Power Sources, 2014, 257: 70 doi: 10.1016/j.jpowsour.2013.12.146
|
[65] |
Lee K J, Smith K, Pesaran A, et al. Three dimensional thermal-, electrical-, and electrochemical-coupled model for cylindrical wound large format lithium-ion batteries. J Power Sources, 2013, 241: 20 doi: 10.1016/j.jpowsour.2013.03.007
|
[66] |
Kim K M, Jeon W S, Chung I J, et al. Effect of mixing sequences on the electrode characteristics of lithium-ion rechargeable batteries. J Power Sources, 1999, 83(1-2): 108 doi: 10.1016/S0378-7753(99)00281-5
|
[67] |
Bauer W, N?tzel D, Wenzel V, et al. Influence of dry mixing and distribution of conductive additives in cathodes for lithium ion batteries. J Power Sources, 2015, 288: 359 doi: 10.1016/j.jpowsour.2015.04.081
|
[68] |
Bockholt H, Haselrieder W, Kwade A. Intensive powder mixing for dry dispersing of carbon black and its relevance for lithium-ion battery cathodes. PowderTechnol, 2016, 297: 266 http://www.sciencedirect.com/science/article/pii/S003259101630170X
|
[69] |
錢龍, 朱丹, 饒睦敏, 等. 鋰離子電池負極分散工藝研究. 電池, 2016, 46(2): 95 doi: 10.3969/j.issn.1001-1579.2016.02.010
Qian L, Zhu D, Rao M M, et al. The study of Li-ion battery cathode dispersion technology. Battery Bimonthly, 2016, 46(2): 95 doi: 10.3969/j.issn.1001-1579.2016.02.010
|
[70] |
Westphal B G, Mainusch N, Meyer C, et al. Influence of high intensive dry mixing and calendering on relative electrode resistivity determinedvia an advanced two point approach. J Energy Storage, 2017, 11: 76 doi: 10.1016/j.est.2017.02.001
|
[71] |
Jin G L, Ahn W G, Kim S J, et al. Effect of shim configuration on internal die flows for non-Newtonian coating liquids in slot coating process. Korea-Australia Rheology J, 2016, 28(2): 159 doi: 10.1007/s13367-016-0015-6
|