Citation: | WEN Guang-hua, YANG Chang-lin, TANG Ping. Research overview of formation and heat transfer of slag film in mold during continuous casting[J]. Chinese Journal of Engineering, 2019, 41(1): 12-21. doi: 10.13374/j.issn2095-9389.2019.01.002 |
[1] |
Mills K C, Fox A B, Li Z, et al. Performance and properties of mould fluxes. Ironmak Steelmak, 2005, 32(1): 26 doi: 10.1179/174328105X15788
|
[2] |
Mills K C, Fox A B. The role of mould fluxes in continuous casting-So simple yet so complex. ISIJ Int, 2003, 43(10): 1479 doi: 10.2355/isijinternational.43.1479
|
[3] |
Mills K C, Courtney L, Fox A B, et al. The use of thermal analysis in the determination of the crystalline fraction of slag films. Thermochim Acta, 2002, 391(1-2): 175 doi: 10.1016/S0040-6031(02)00175-2
|
[4] |
張平, 魏慶成, 王家蔭, 等. 連鑄結晶器中保護渣渣膜傳熱的研究現狀. 鋼鐵研究學報, 1995, 7(4): 74 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON504.014.htm
Zhang P, Wei Q C, Wang J Y, et al. Present state of research on heat transfer of casting flux film in continuous casting mold. J Iron Steel Res, 1995, 7(4): 74 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON504.014.htm
|
[5] |
Meng Y, Thomas B G. Simulation of microstructure and behavior of interfacial mold slag layers in continuous casting of steel. ISIJ Int, 2006, 46(5): 660 doi: 10.2355/isijinternational.46.660
|
[6] |
Kashiwaya Y, Cicutti C E, Cramb A W, et al. Development of double and single hot thermocouple technique for in situ observation and measurement of mold slag crystallization. ISIJ Int, 1998, 38(4): 348 doi: 10.2355/isijinternational.38.348
|
[7] |
Zhou L J, Wang W L, Liu R, et al. Computational modeling of temperature, flow, and crystallization of mold slag during double hot thermocouple technique experiments. Metall Mater Trans B, 2013, 44(5): 1264 doi: 10.1007/s11663-013-9864-2
|
[8] |
Li J, Wang W L, Wei J, et al. A kinetic study of the effect of Na2O on the crystallization behavior of mold fluxes for casting medium carbon steel. ISIJ Int, 2012, 52(12): 2220 doi: 10.2355/isijinternational.52.2220
|
[9] |
Lu B X, Chen K, Wang W L, et al. Effects of Li2O and Na2O on the crystallization behavior of lime-aliminum-based mold flux for casting high-Al steels. Metall Mater Trans B, 2014, 45(4): 1496 doi: 10.1007/s11663-014-0063-6
|
[10] |
Gao J X, Wen G H, Sun Q H, et al. The influence of Na2O on the solidification and crystallization behavior of CaO-SiO2-Al2O3 based mold flux. Metall Mater Trans B, 2015, 46(4): 1850 doi: 10.1007/s11663-015-0366-2
|
[11] |
Wen G H, Tang P, Yang B, et al. Simulation and characterization on heat transfer through mould slag film. ISIJ Int, 2012, 52(7): 1179 doi: 10.2355/isijinternational.52.1179
|
[12] |
Wen G H, Zhu X B, Tang P, et al. Influence of raw material type on heat transfer and structure of mould slag. ISIJ Int, 2011, 51(7): 1028 doi: 10.2355/isijinternational.51.1028
|
[13] |
Yang C L, Wen G H, Sun Q H, et al. Evolution of temperature and solid slag film during solidification of mold fluxes. Metall Mater Trans B, 2017, 48(2): 1292 doi: 10.1007/s11663-017-0917-9
|
[14] |
Mills K C. A short history of mould powders. Ironmak Steelmak, 2017, 44(5): 326 doi: 10.1080/03019233.2017.1288367
|
[15] |
Cho J, Shibata H, Emi T, et al. Thermal resistance at the interface between mold flux film and mold for continuous casting of steels. ISIJ Int, 1998, 38(5): 440 doi: 10.2355/isijinternational.38.440
|
[16] |
Park J Y, Sohn Ⅱ. Evaluating the heat transfer phenomenon and the interfacial thermal resistance of mold flux using a copper disc mold simulator. Int J Heat Mass Transfer, 2017, 109: 1014 doi: 10.1016/j.ijheatmasstransfer.2017.02.092
|
[17] |
Tsutsumi K, Nagasaka T, Hino M. Surface roughness of solidified mold flux in continuous casting process. ISIJ Int, 1999, 39(11): 1150 doi: 10.2355/isijinternational.39.1150
|
[18] |
Shibata H, Kondo K, Suzuki M, et al. Thermal resistance between solidifying steel shell and continuous casting mold with intervening flux film. ISIJ Int, 1996, 36(Suppl): S179 doi: 10.2355/isijinternational.36.Suppl_S179
|
[19] |
Long X, He S P, Wang Q, et al. Structure of solidified films of mold flux for peritectic steel. Metall Mater Trans B, 2017, 48(3): 1652 doi: 10.1007/s11663-017-0965-1
|
[20] |
Mill K C. Structure and properties of slags used in the continuous casting of steel: Part 1 conventional mould powders. ISIJ Int, 2016, 56(1): 1 doi: 10.2355/isijinternational.ISIJINT-2015-231
|
[21] |
Lee D W, Kingery W D. Radiation energy transfer and thermal conductivity of ceramic oxides. J Am Ceram Soc, 1960, 43(11): 594 doi: 10.1111/j.1151-2916.1960.tb13623.x
|
[22] |
Anderson S P, Eggertson C. Thermal conductivity of powders used in continuous casting of steel. Ironmak Steelmak, 2015, 42(6): 456 doi: 10.1179/1743281214Y.0000000250
|
[23] |
Susa M, Watanabe M, Ozawa S, et al. Thermal conductivity of CaO-SiO2-Al2O3 glassy slags: its dependence on molar ratios of Al2O3/CaO and SiO2/Al2O3. Ironmak Steelmak, 2007, 34(2): 124 doi: 10.1179/174328107X165672
|
[24] |
Ozawa S, Susa M. Effect of Na2O additions on thermal conductivities of CaO-SiO2 slags. Ironmak Steelmak, 2005, 32(6): 487 doi: 10.1179/174328105X48179
|
[25] |
Hayashi M, Abas R A, Seetharaman S. Effect of crystallinity on thermal diffusivities of mould fluxes for the continuous casting of steels. ISIJ Int, 2004, 44(4): 691 doi: 10.2355/isijinternational.44.691
|
[26] |
Waseda Y, Masuda M, Watanabe K, et al. Thermal diffusivitites of continuous casting powders for steel at high temperature. High Temp Mater Processes, 1994, 13(4): 267 doi: 10.1515/HTMP.1994.13.4.267
|
[27] |
Wang W L, Cramb A W. The observation of mold flux crystallization on radiative heat transfer. ISIJ Int, 2005, 45(12): 1864 doi: 10.2355/isijinternational.45.1864
|
[28] |
Cho J, Shibata H, Emi T, et al. Radiative heat transfer through mold flux film during initial solidification in continuous casting of steel. ISIJ Int, 1998, 38(3): 268 doi: 10.2355/isijinternational.38.268
|
[29] |
Diao J, Xie B, Wang N H, et al. Effect of transition metal oxides on radiative heat transfer through mold flux film in continuous casting of steel. ISIJ Int, 2007, 47(9): 1294 doi: 10.2355/isijinternational.47.1294
|
[30] |
Diao J, Xie B, Xiao J P, et al. Radiative heat transfer in transition metal oxides contained in mold fluxes. ISIJ Int, 2009, 49(11): 1710 doi: 10.2355/isijinternational.49.1710
|
[31] |
刁江, 謝兵. 基于FTIR和XRD的降低連鑄保護渣紅外輻射傳熱研究. 光譜學與光譜分析, 2009, 29(2): 336 doi: 10.3964/j.issn.1000-0593(2009)02-0336-04
Diao J, Xie B. Research on reducing mold flux's radiative heat transfer based on FTIR and XRD. Spectrosc Spect Anal, 2009, 29(2): 336 doi: 10.3964/j.issn.1000-0593(2009)02-0336-04
|
[32] |
Susa M, Kushimoto A, Toyota H, et al. Effects of both crystallization and iron oxides on the radiative heat transfer in mould fluxes. ISIJ Int, 2009, 49(11): 1722 doi: 10.2355/isijinternational.49.1722
|
[33] |
Susa M, Kushimoto A, Endo R, et al. Controllability of radiative heat flux across mould flux films by cuspidine grain size. ISIJ Int, 2011, 51(10): 1587 doi: 10.2355/isijinternational.51.1587
|
[34] |
Bucholtz A. Rayleigh-scattering calculations for the terrestrial atmosphere. Appl Opt, 1995, 34(15): 2765 doi: 10.1364/AO.34.002765
|
[35] |
Yoon D W, Cho J W, Kim S H. Scattering effect of iron metallic particles on the extinction coefficient of CaO-SiO2-B2O3-Na2O-Fe2O3-CaF2 glasses. Metall Mater Trans B, 2016, 47(5): 2785 doi: 10.1007/s11663-016-0765-z
|
[36] |
Yang C L, Wen G H, Zhu X F, et al. In situ observation and numerical simulation of bubble behavior in CaO-SiO2 based slag during isothermal and nonisothermal processes. J Non-Cryst Solids, 2017, 464: 56 doi: 10.1016/j.jnoncrysol.2017.03.028
|
[37] |
Rousseau B, Meneses D D S, Echegut P, et al. Textural parameters influencing the radiative properties of a semitransparent porous media. Int J Therm Sci, 2011, 50(2): 178 doi: 10.1016/j.ijthermalsci.2010.10.001
|