<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
YE Ling-ying, YANG Wen-qing, TANG Jian-guo, LIU Sheng-dan, DENG Yun-lai, ZHANG Xin-ming. Effect of aging on the microstructure and stress corrosion resistance of Al–Zn?Mg alloy[J]. Chinese Journal of Engineering, 2019, 41(12): 1575-1582. doi: 10.13374/j.issn2095-9389.2018.12.28.005
Citation: YE Ling-ying, YANG Wen-qing, TANG Jian-guo, LIU Sheng-dan, DENG Yun-lai, ZHANG Xin-ming. Effect of aging on the microstructure and stress corrosion resistance of Al–Zn?Mg alloy[J]. Chinese Journal of Engineering, 2019, 41(12): 1575-1582. doi: 10.13374/j.issn2095-9389.2018.12.28.005

Effect of aging on the microstructure and stress corrosion resistance of Al–Zn?Mg alloy

doi: 10.13374/j.issn2095-9389.2018.12.28.005
More Information
  • Corresponding author: E-mail: jgtang@csu.edu.cn
  • Received Date: 2018-12-27
  • Publish Date: 2019-12-01
  • Controlling the balance between mechanical properties and stress corrosion resistance of Al–Zn?Mg alloys by aging tempers has long been an active focal point of research. Traditional peak-age can improve the mechanical properties, but the continuous precipitate at the grain boundary reduces the stress corrosion resistance of the alloy. While alloys in over-aged (T73) condition show good resistance to stress corrosion, their mechanical properties will drop significantly. In this paper, tensile properties, resistances to stress corrosion, and microstructures of the Al–Zn?Mg alloy, in interrupted aged (T5I4, T5I6) and traditional (T5, T73) tempers, were studied using a tensile test, a slow strain rate tensile test, and transmission electron microscopy. Results reveal that the tensile strength of T5I4 temper is 400.0 MPa, higher than that of T5,T73 tempers, while the stress corrosion resistance is clearly compromised, with index of slow strain rate testing, ISSRT, of 5.7%, significantly larger than that of the other three aging treatments. The tensile strength of the T5I6 temper increases to 408.5 MPa, and the stress corrosion resistance is also improved, to ISSRT=3.2%, significantly lower than that of T5 and T5I4 tempers. Volume fraction (8.8%) and average particle diameter (2.0 nm) of intragranular precipitates of T5I4 temper has the minimum value among the four aging treatments, and there are large numbers of fine precipitates distributed continuously at grain boundaries. In the T5I6 temper, the number of intragranular precipitates increase significantly, and the volume fraction of intragranular precipitates is 24.6%, larger than that of the other three aging treatments. In addition, the average particle diameter (4.1 nm) of the intragranular precipitates of the T5I6 temper is larger than that of the T5I4 temper, but is still smaller than that of the T5 and T73 tempers. Precipitates at the grain boundaries of the T5I6 temper are unevenly distributed, and significantly larger than those of the T5I4 temper.

     

  • loading
  • [1]
    Qi H, Liu X Y, Liang S X, et al. Mechanical properties and corrosion resistance of Al?Cu?Mg?Ag heat-resistant alloy modified by interrupted aging. J Alloys Compd, 2016, 657: 318 doi: 10.1016/j.jallcom.2015.10.094
    [2]
    Krishnan M A, Raja V S, Shukla S, et al. Mitigating intergranular stress corrosion cracking in age-hardenable Al–Zn?Mg–Cu alloys. Metall Mater Trans A, 2018, 49(6): 2487 doi: 10.1007/s11661-018-4601-8
    [3]
    Lumley R N, Polmear I J, Morton A J. Temper developments using secondary ageing // Proceedings of the 9th International Conference on Aluminium Alloys (2004). Brisbane: Institute of Materials Engineering Australasia Ltd, 2004: 85
    [4]
    Sharma M M, Amateau M F, Eden T J. Hardening mechanisms of spray formed Al–Zn–Mg–Cu alloys with scandium and other elemental additions. J Alloys Compd, 2006, 416(1-2): 135 doi: 10.1016/j.jallcom.2005.08.045
    [5]
    Wang Y L, Jiang H C, Li Z M, et al. Two-stage double peaks ageing and its effect on stress corrosion cracking susceptibility of Al–Zn?Mg alloy. J Mater Sci Technol, 2018, 34(7): 1250 doi: 10.1016/j.jmst.2017.05.008
    [6]
    楊濤, 葉凌英, 單朝軍, 等. 預時效工藝對7020鋁合金顯微組織和應力腐蝕性能的影響. 中國有色金屬學報, 2016, 26(5):947

    Yang T, Ye L Y, Shan Z J, et al. Effect of pre-aging on microstructure and stress corrosion resistance of 7020 aluminum alloy. Chin J Nonferrous Met, 2016, 26(5): 947
    [7]
    宋豐軒, 張新明, 劉勝膽, 等. 時效對7050鋁合金預拉伸板抗腐蝕性能的影響. 中國有色金屬學報, 2013, 23(3):645

    Song F X, Zhang X M, Liu S D, et al. Effect of aging on corrosion resistance of 7050 aluminum alloy pre-stretching plate. Chin J Nonferrous Met, 2013, 23(3): 645
    [8]
    Han N M, Zhang X M, Liu S D, et al. Effects of pre-stretching and ageing on the strength and fracture toughness of aluminum alloy 7050. Mater Sci Eng A, 2011, 528(10-11): 3714 doi: 10.1016/j.msea.2011.01.068
    [9]
    劉繼華, 李荻, 郭寶蘭. 7xxx系列Al合金應力腐蝕開裂的研究. 腐蝕科學與防護技術, 2001, 13(4):218 doi: 10.3969/j.issn.1002-6495.2001.04.009

    Liu J H, Li D, Guo B L. Investigation of stress corrosion cracking of 7xxx series aluminum alloys. Corros Sci Prot Technol, 2001, 13(4): 218 doi: 10.3969/j.issn.1002-6495.2001.04.009
    [10]
    Lumley R N, Polmear I J. The effect of long term creep exposure on the microstructure and properties of an underaged Al?Cu?Mg?Ag alloy. Scripta Mater, 2004, 50(9): 1227 doi: 10.1016/j.scriptamat.2004.02.001
    [11]
    王志發, 劉曉艷, 張瑞杰, 等. 斷續時效對Al?Cu?Mg?Ag新型耐熱鋁合金抗腐蝕性能的影響. 中南大學學報: 自然科學版, 2017, 48(7):1726

    Wang Z F, Liu X Y, Zhang R J, et al. Effects of interrupted aging on corrosion resistance of Al?Cu?Mg?Ag new heat-resistant Al alloy. J Cent South Univ Sci Technol, 2017, 48(7): 1726
    [12]
    陳宇強, 宋文煒, 潘素平, 等. T6I4和T6I6時效處理對7050鋁合金疲勞性能的影響. 中南大學學報: 自然科學版, 2016, 47(10):3332

    Chen Y Q, Song W W, Pan S P, et al. Influence of T6I4 and T6I6 aging treatments on fatigue properties of 7050 Al alloy. J Cent South Univ Sci Technol, 2016, 47(10): 3332
    [13]
    韓念梅, 張新明, 劉勝膽, 等. 斷續時效對7050鋁合金強度和斷裂韌性的影響. 中南大學學報: 自然科學版, 2012, 43(9):3363

    Han N M, Zhang X M, Liu S D, et al. Effects of interrupt aging on strength and fracture toughness of 7050 aluminum alloy. J Cent South Univ Sci Technol, 2012, 43(9): 3363
    [14]
    鄔沛卿. 熱處理制度對7N01鋁合金性能的影響[學位論文]. 長沙: 中南大學, 2014

    Wu P Q. The Effect of Heat Treatment on the Properties of 7N01 Aluminum Alloys [Dissertation]. Changsha: Central South University, 2014
    [15]
    Rout P K, Ghosh M M, Ghosh K S. Effect of interrupted ageing on stress corrosion cracking (SCC) behaviour of an Al–Zn?Mg?Cu alloy. Procedia Mater Sci, 2014, 5: 1214 doi: 10.1016/j.mspro.2014.07.427
    [16]
    Waterloo G, Hansen V, Gj?nnes J, et al. Effect of predeformation and preaging at room temperature in Al–Zn–Mg–(Cu, Zr) alloys. Mater Sci Eng A, 2001, 303(1-2): 226 doi: 10.1016/S0921-5093(00)01883-9
    [17]
    夏泓瑋. 固溶工藝和斷續時效對7150鋁合金組織和力學性能的影響[學位論文]. 哈爾濱: 哈爾濱工業大學, 2016

    Xia H W. Effects of Solution Process and Interrupted Aging on Microstructures and Mechanical Properties of 7150 Aluminum Alloy [Dissertation]. Harbin: Harbin Institute of Technology, 2016
    [18]
    Li B, Wang X M, Chen H, et al. Influence of heat treatment on the strength and fracture toughness of 7N01 aluminum alloy. J Alloys Compd, 2016, 678: 160 doi: 10.1016/j.jallcom.2016.03.228
    [19]
    陳小明, 宋仁國. 7000系鋁合金應力腐蝕開裂的研究進展. 腐蝕科學與防護技術, 2010, 22(2):120

    Chen X M, Song R G. Progress in research on stress corrosion cracking of 7000 series aluminum alloys. Corros Sci Prot Technol, 2010, 22(2): 120
    [20]
    Deng Y, Yin Z M, Zhao K, et al. Effects of Sc and Zr microalloying additions and aging time at 120 ℃ on the corrosion behavior of an Al?Zn?Mg alloy. Corros Sci, 2012, 65: 288 doi: 10.1016/j.corsci.2012.08.024
    [21]
    莊俊杰, 張曉燕, 孫斌, 宋仁國, 李海. 微弧氧化對7050鋁合金腐蝕行為的影響. 工程科學學報, 2017, 39(10):1532

    Zhuang J J, Zhang X Y, Sun B, et al. Microarc oxidation coatings and corrosion behavior of 7050 aluminum alloy. Chin J Eng, 2017, 39(10): 1532
    [22]
    林莉, 鄭子樵, 李勁風. 時效制度對6156鋁合金力學性能及腐蝕性能的影響. 稀有金屬材料與工程, 2012, 41(6):1004 doi: 10.3969/j.issn.1002-185X.2012.06.013

    Lin L, Zheng Z Q, Li J F. Effect of aging treatments on the mechanical properties and corrosion behavior of 6156 aluminum alloy. Rare Met Mater Eng, 2012, 41(6): 1004 doi: 10.3969/j.issn.1002-185X.2012.06.013
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(3)  / Tables(6)

    Article views (1291) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频