Citation: | WANG He-nan, DENG Jia-cheng, SHAO Bing-bing, LIU Hong. Influence of aging on corrosion resistance and structure of the passive film formed on Al?2Li binary alloys[J]. Chinese Journal of Engineering, 2019, 41(11): 1444-1449. doi: 10.13374/j.issn2095-9389.2018.11.30.004 |
[1] |
Heinz A, Haszler A, Keidel C, et al. Recent development in aluminium alloys for aerospace applications. Mater Sci Eng A, 2000, 280(1): 102 doi: 10.1016/S0921-5093(99)00674-7
|
[2] |
Ovei H, Jagle E A, Stark A, et al. Microstructural influences on strengthening in a naturally aged and overaged Al?Cu?Li?Mg based alloy. Mater Sci Eng A, 2015, 637: 162 doi: 10.1016/j.msea.2015.04.039
|
[3] |
Li H Y, Huang D S, Kang W, et al. Effect of different aging processes on the microstructure and mechanical properties of a novel Al?Cu?Li alloy. J Mater Sci Technol, 2016, 32(10): 1049 doi: 10.1016/j.jmst.2016.01.018
|
[4] |
Yu X X, Yin D F, Yu Z M, et al. Effects of cerium addition on solidification behaviour and intermetallic structure of novel Al-Cu-Li alloys. Rare Met Mater Eng, 2016, 45(6): 1423 doi: 10.1016/S1875-5372(16)30125-4
|
[5] |
Yu X X, Yin D F, Yu Z M, et al. Microstructure evolution of novel Al?Cu?Li?Ce alloys during homogenization. Rare Met Mater Eng, 2016, 45(7): 1687 doi: 10.1016/S1875-5372(16)30141-2
|
[6] |
Willams D B, Edington J W. The discontinuous precipitation reaction in dilute Al?Li alloys. Acta Metall, 1976, 24(4): 323 doi: 10.1016/0001-6160(76)90007-9
|
[7] |
Baumann S F, Willams D B. A new method for the determination of the precipitate-matrix interfacial energy. Scripta Metall, 1984, 18(6): 611 doi: 10.1016/0036-9748(84)90351-X
|
[8] |
Deschamps A, Sigli C, Mourey T, et al. Experimental and modelling assessment of precipitation kinetics in an Al?Li?Mg alloy. Acta Mater, 2012, 60(5): 1917 doi: 10.1016/j.actamat.2012.01.010
|
[9] |
Kolobney N I, Khokhlatova L B, Fridlyander I N. Aging of Al?Li alloys having composite particles of hardening phases. Mater Forum, 2004, 28: 208
|
[10] |
Pérez-Landazábal J I, Nó M L, Madariaga G, et al. Quantitative analysis of δ' precipitation kinetics in Al?Li alloys. Acta Mater, 2000, 48(6): 1283 doi: 10.1016/S1359-6454(99)00421-8
|
[11] |
Huang J C, Ardell A J. Precipitation strengthening of binary Al?Li alloys by δ' precipitates. Mater Sci Eng A, 1988, 104: 149 doi: 10.1016/0025-5416(88)90416-8
|
[12] |
Lewandowska M, Mizera J, Wyrzkowski J W. Cyclic behaviour of model Al?Li alloys: effect of the precipitate state. Mater Charact, 2000, 45(3): 195 doi: 10.1016/S1044-5803(00)00074-7
|
[13] |
Prasad K S, Mukhopadhyay A K, Gokhale A A, et al. δ precipitation in an Al?Li?Cu?Mg?Zr alloy. Scripta Metall Mater, 1994, 30(10): 1299 doi: 10.1016/0956-716X(94)90262-3
|
[14] |
Lin Y, Zheng Z Q, Li S C, et al. Microstructures and properties of 2099 Al?Li alloy. Mater Charact, 2013, 84: 88 doi: 10.1016/j.matchar.2013.07.015
|
[15] |
蔡超, 李勁風, 王恒, 等. 鋁鋰合金晶間腐蝕敏感性與時效階段的相關性. 稀有金屬材料與工程, 2015, 44(10):2523
Chai C, Li J F, Wang H, et al. Dependence of intergranular corrosion sensitivity of Al?Li alloys on aging stage. Rare Met Mater Eng, 2015, 44(10): 2523
|
[16] |
Ma Y L, Zhou X R, Meng X M, et al. Influence of thermomechanical treatments on localized corrosion susceptibility and propagation mechanism of AA2099 Al?Li alloy. Trans Nonferrous Met Soc China, 2016, 26(6): 1472 doi: 10.1016/S1003-6326(16)64252-8
|
[17] |
Goebel J, Ghidini T, Graham A J. Stress-corrosion cracking characterization of the advanced aerospace Al?Li 2099-T86 alloy. Mater Sci Eng A, 2016, 673: 16 doi: 10.1016/j.msea.2016.07.013
|
[18] |
Niskanen P, Sanders T H. Influence of microstructure on the corrosion of Al?Li, Al?Li?Mn, Al?Li?Mg and Al?Li?Cu alloys in 3.5% NaCl solution. Bulletin de l'Association Technique Maritime et Aeronautique, 1981: 347
|
[19] |
Ambat R, Prasad R K, Dwarakadasa E S. The influence of aging at 180 ℃ on the corrosion behaviour of a ternary Al?Li?Zr alloy. Corros Sci, 1995, 37(8): 1253 doi: 10.1016/0010-938X(95)00030-N
|
[20] |
Moreto J A, Marino C E B, Bose Filho W W, et al. SVET, SKP and EIS study of the corrosion behaviour of high strength Al and Al?Li alloys used in aircraft fabrication. Corros Sci, 2014, 84: 30 doi: 10.1016/j.corsci.2014.03.001
|
[21] |
Chao C Y, Lin L F, Macdonald D D. A point defect model for anodic passive films, I. Film growth kinetics. J Electrochem Soc, 1981, 128(6): 1187 doi: 10.1149/1.2127591
|
[22] |
Lin L F, Chao C Y, Macdonald D D. A point defect model for anodic passive films, Ⅱ. Chemical breakdown and pit initiation. J Electrochem Soc, 1981, 128(6): 1194 doi: 10.1149/1.2127592
|
[23] |
Morrison S R, translated by Wu H H. Electrochemistry at Semiconductor and Oxidized Metal Electrode. Beijing: Science Press, 1988
|
[24] |
Lü J L, Liang T X, Wang C, et al. The passive film characteristics of several plastic deformation 2099 Al?Li alloy. J Alloys Compd, 2016, 662: 143 doi: 10.1016/j.jallcom.2015.12.051
|
[25] |
Schultze J W, Lohrengel M M. Stability, reactivity and breakdown of passive films. Problems of recent and future research. Electrochim Acta, 2000, 45(15-16): 2499 doi: 10.1016/S0013-4686(00)00347-9
|
[26] |
Pletcher B A, Wang K G, Glicksman M E. Experimental, computational and theoretical studies of δ' phase coarsening in Al?Li alloys. Acta Mater, 2012, 60(16): 5803 doi: 10.1016/j.actamat.2012.07.021
|
[27] |
柴志剛, 孟繁玲, 鄒青. Al?Li合金時效?回歸?再時效析出δ'相的行為. 物理學報, 2001, 50(7):1401 doi: 10.3321/j.issn:1000-3290.2001.07.039
Chai Z G, Meng F L, Zou Q. The precipitation behiavior of δ' phase in Al?Li alloy treated by aging?retrogression?reaging. Acta Phys Sin, 2001, 50(7): 1401 doi: 10.3321/j.issn:1000-3290.2001.07.039
|