<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 11
Dec.  2019
Turn off MathJax
Article Contents
LIU Xi-ling, LIU Zhou, LI Xi-bing, HAN Meng-si, YANG Liu-qing. Acoustic emission and micro-rupture characteristics of rocks under Brazilian splitting load[J]. Chinese Journal of Engineering, 2019, 41(11): 1422-1432. doi: 10.13374/j.issn2095-9389.2018.11.29.005
Citation: LIU Xi-ling, LIU Zhou, LI Xi-bing, HAN Meng-si, YANG Liu-qing. Acoustic emission and micro-rupture characteristics of rocks under Brazilian splitting load[J]. Chinese Journal of Engineering, 2019, 41(11): 1422-1432. doi: 10.13374/j.issn2095-9389.2018.11.29.005

Acoustic emission and micro-rupture characteristics of rocks under Brazilian splitting load

doi: 10.13374/j.issn2095-9389.2018.11.29.005
More Information
  • Corresponding author: E-mail: lxlenglish@163.com
  • Received Date: 2018-11-29
  • Publish Date: 2019-11-01
  • Considering the polycrystalline and anisotropic features of rock, its mechanical failure actually involves the generation, propagation, and penetration of internal micro-cracks until an ultimate macro-fracture is achieved. The nucleation and propagation of cracks emits energy outward as elastic waves referred to as acoustic emission (AE). The close relationship between AE signals and the rock fracture mechanism has been demonstrated. Many instability and failure processes in underground engineering are induced by the effects of tensile stress on tunnels and chambers or local damage to the rock structure. Several compression experiments show that the main fracture mode of rock is tensile failure. Thus, investigations of rock AE characteristics under tensile failure and the effects of the rock fabric on crack propagation patterns are of great significance. This study assesses the signal characteristics AE and its relationship with the micro-rupture mechanisms in granite and marble under tensile stress. Herein, an MTS-322 rock mechanical test system was employed to carry out Brazilian split tests, and a scanning electron microscope was employed to carry out micro-morphological analysis of rupture surfaces. According to the trends of RA and AF, the distribution of crack modes-tensile and shear or mixed patterns in both rock types and its fracture strength depend on the rock fabric. By contrast, the evolution process of crack propagation appears to depend on the softening process. Although the rock fracture signals are mainly in the range of 400?499 kHz and 100?199 kHz, the variation trend of peak frequency shows significant differences at different failure stages. At the microtopographic level, granite mainly shows three micro-morphologies, including laminated, stepwise, and smooth planar patterns. Marble is mostly smooth polyhedrals. The signals at 400?499 kHz may be inferred to be mainly generated by fractures in the k-feldspar and marble minerals, while those at 100?199 kHz are mainly produced by discontinuous separation among quartz mineral particles and slipping among mineral particles in the compaction stage.

     

  • loading
  • [1]
    王曉軍, 馮蕭, 趙康. 不同回采斷面頂板充填體破裂聲發射數值模擬研究. 礦業研究與開發, 2011, 31(1):9

    Wang X J, Feng X, Zhao K. Numerical simulation on acoustic emission of roof fill failure of mining drift with different cross-section. Min Res Dev, 2011, 31(1): 9
    [2]
    Zhang S W, Shou K J, Xian X F, et al. Fractal characteristics and acoustic emission of anisotropic shale in Brazilian tests. Tunnelling Underground Space Technol, 2018, 71: 298 doi: 10.1016/j.tust.2017.08.031
    [3]
    Lockner D. The role of acoustic emission in the study of rock fracture. Int J Rock Mech Min Sci Geomech Abstr, 1993, 30(7): 883 doi: 10.1016/0148-9062(93)90041-B
    [4]
    Rudajev V, Vilhelm J, Lokají?ek T. Laboratory studies of acoustic emission prior to uniaxial compressive rock failure. Int J Rock Mech Min Sci, 2000, 37(4): 699 doi: 10.1016/S1365-1609(99)00126-4
    [5]
    Yang L, Kang H S, Zhou Y C, et al. Frequency as a key parameter in discriminating the failure types of thermal barrier coatings: cluster analysis of acoustic emission signals. Surf Coat Technol, 2015, 264: 97 doi: 10.1016/j.surfcoat.2015.01.014
    [6]
    張艷博, 梁鵬, 劉祥鑫, 等. 基于聲發射信號主頻和熵值的巖石破裂前兆試驗研究. 巖石力學與工程學報, 2015, 34(增刊1): 2959

    Zhang Y B, Liang P, Liu X X, et al. Experimental study on precursor of rock burst based on acoustic emission signal dominant-frequency and entropy. Chin J Rock Mech Eng, 2015, 34(Suppl 1): 2959
    [7]
    Shiotani T, Ohtsu M, Ikeda K. Detection and evaluation of AE waves due to rock deformation. Construction Building Mater, 2001, 15(5-6): 235 doi: 10.1016/S0950-0618(00)00073-8
    [8]
    Carpinteri A, Corrado M, Lacidogna G. Heterogeneous materials in compression: correlations between absorbed, released and acoustic emission energies. Eng Fail Anal, 2013, 33: 236 doi: 10.1016/j.engfailanal.2013.05.016
    [9]
    肖福坤, 劉剛, 秦濤, 等. 拉−壓−剪應力下細砂巖和粗砂巖破裂過程聲發射特性研究. 巖石力學與工程學報, 2016, 35(增刊2): 3458

    Xiao F K, Liu G, Qin T, et al. Acoustic emission (AE) characteristics of fine sandstone and coarse sandstone fracture process under tension-compression-shear stress. Chin J Rock Mech Eng, 2016, 35(Suppl 2): 3458
    [10]
    Wang H J, Liu D A, Cui Z D, et al. Investigation of the fracture modes of red sandstone using XFEM and acoustic emissions. Theor Appl Fract Mech, 2016, 85: 283 doi: 10.1016/j.tafmec.2016.03.012
    [11]
    曾鵬, 劉陽軍, 紀洪廣, 等. 單軸壓縮下粗砂巖臨界破壞的多頻段聲發射耦合判據和前兆識別特征. 巖土工程學報, 2017, 39(3):509 doi: 10.11779/CJGE201703015

    Zeng P, Liu Y J, Ji H G, et al. Coupling criteria and precursor identification characteristics of multi-band acoustic emission of gritstone fracture under uniaxial compression. Chin J Geotech Eng, 2017, 39(3): 509 doi: 10.11779/CJGE201703015
    [12]
    Bucheim W. Geophysical methods for the study of rock pressure in coal and potash salt mining//International Strata Control Congress. Leipzig, 1958: 222
    [13]
    Rodríguez P, Celestino T B. Application of acoustic emission monitoring and signal analysis to the qualitative and quantitative characterization of the fracturing process in rocks. Eng Fract Mech, 2019, 210: 54 doi: 10.1016/j.engfracmech.2018.06.027
    [14]
    梁昌玉, 吳樹仁, 李曉. 中低應變率范圍內單軸壓縮下花崗巖斷口細-微觀特征研究. 巖石力學與工程學報, 2015, 34(增刊1): 2977

    Liang C Y, Wu S R, Li X. Research on micro-meso characteristics of granite fracture under uniaxial compression at low and intermediate strain rates. Chin J Rock Mech Eng, 2015, 34(Suppl 1): 2977
    [15]
    Zhang Q B, Zhao J. Quasi-static and dynamic fracture behaviour of rock materials: Phenomena and mechanisms. Int J Fract, 2014, 189(1): 1 doi: 10.1007/s10704-014-9959-z
    [16]
    Manthei G. Characterization of acoustic emission sources in a rock salt specimen under triaxial compression. Bull Seismological Soc Am, 2005, 95(5): 1674 doi: 10.1785/0120040076
    [17]
    Alkan H, Cinar Y, Pusch G. Rock salt dilatancy boundary from combined acoustic emission and triaxial compression tests. Int J Rock Mech Min Sci, 2007, 44(1): 108 doi: 10.1016/j.ijrmms.2006.05.003
    [18]
    李世愚, 和泰名, 尹祥礎. 巖石斷裂力學. 北京: 科學出版社, 2015

    Li S Y, He T M, Yin X C. Rock Fracture Mechanics. Beijing: Science press, 2015
    [19]
    Ohno K, Ohtsu M. Crack classification in concrete based on acoustic emission. Construction Build Mater, 2010, 24(12): 2339 doi: 10.1016/j.conbuildmat.2010.05.004
    [20]
    臧紹先. 地震應力降與巖石破裂應力降. 地震學報, 1984, 6(2):182

    Zang S X. Earthquake stress drop and the stress drops of rock fracture. Acta Seismologica Sinica, 1984, 6(2): 182
    [21]
    Backers T, Stanchits S, Dresen G. Tensile fracture propagation and acoustic emission activity in sandstone: the effect of loading rate. Int J Rock Mech Min Sci, 2005, 42(7-8): 1094 doi: 10.1016/j.ijrmms.2005.05.011
    [22]
    Mogi K. Study of elastic shocks caused by the fracture of heterogeneous materials and its relation to earthquake phenomena. Bull Earthquake Res Inst Univ Tokyo, 1962, 40: 125
    [23]
    Scholz C H. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull Seismological Soc Am, 1968, 58(1): 399
    [24]
    Burlini L, Vinciguerra S, Toro G D, et al. Seismicity preceding volcanic eruptions: new experimental insights. Geology, 2007, 35(2): 183 doi: 10.1130/G23195A.1
    [25]
    Benson P M, Vinciguerra S, Meredith P G, et al. Laboratory simulation of volcano seismicity. Science, 2008, 322(5899): 249 doi: 10.1126/science.1161927
    [26]
    Eaton D W, van der Baan M, Birkelo B, et al. Scaling relations and spectral characteristics of tensile microseisms: evidence for opening/closing cracks during hydraulic fracturing. Geophys J Int, 2014, 196(3): 1844 doi: 10.1093/gji/ggt498
    [27]
    Mao W W, Towhata I. Monitoring of single-particle fragmentation process under static loading using acoustic emission. Appl Acoustics, 2015, 94: 39 doi: 10.1016/j.apacoust.2015.02.007
    [28]
    Hull D. Fractography: Observing, Measuring and Interpreting Fracture Surface Topography. Cambridge: Cambridge University Press, 1999
    [29]
    Zang A, Wagner C F, Dresen G. Acoustic emission, microstructure, and damage model of dry and wet sandstone stressed to failure. J Geophysl Res, 1996, 101(B8): 17507 doi: 10.1029/96JB01189
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article views (1542) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频