Citation: | LIU Xi-ling, LIU Zhou, LI Xi-bing, HAN Meng-si, YANG Liu-qing. Acoustic emission and micro-rupture characteristics of rocks under Brazilian splitting load[J]. Chinese Journal of Engineering, 2019, 41(11): 1422-1432. doi: 10.13374/j.issn2095-9389.2018.11.29.005 |
[1] |
王曉軍, 馮蕭, 趙康. 不同回采斷面頂板充填體破裂聲發射數值模擬研究. 礦業研究與開發, 2011, 31(1):9
Wang X J, Feng X, Zhao K. Numerical simulation on acoustic emission of roof fill failure of mining drift with different cross-section. Min Res Dev, 2011, 31(1): 9
|
[2] |
Zhang S W, Shou K J, Xian X F, et al. Fractal characteristics and acoustic emission of anisotropic shale in Brazilian tests. Tunnelling Underground Space Technol, 2018, 71: 298 doi: 10.1016/j.tust.2017.08.031
|
[3] |
Lockner D. The role of acoustic emission in the study of rock fracture. Int J Rock Mech Min Sci Geomech Abstr, 1993, 30(7): 883 doi: 10.1016/0148-9062(93)90041-B
|
[4] |
Rudajev V, Vilhelm J, Lokají?ek T. Laboratory studies of acoustic emission prior to uniaxial compressive rock failure. Int J Rock Mech Min Sci, 2000, 37(4): 699 doi: 10.1016/S1365-1609(99)00126-4
|
[5] |
Yang L, Kang H S, Zhou Y C, et al. Frequency as a key parameter in discriminating the failure types of thermal barrier coatings: cluster analysis of acoustic emission signals. Surf Coat Technol, 2015, 264: 97 doi: 10.1016/j.surfcoat.2015.01.014
|
[6] |
張艷博, 梁鵬, 劉祥鑫, 等. 基于聲發射信號主頻和熵值的巖石破裂前兆試驗研究. 巖石力學與工程學報, 2015, 34(增刊1): 2959
Zhang Y B, Liang P, Liu X X, et al. Experimental study on precursor of rock burst based on acoustic emission signal dominant-frequency and entropy. Chin J Rock Mech Eng, 2015, 34(Suppl 1): 2959
|
[7] |
Shiotani T, Ohtsu M, Ikeda K. Detection and evaluation of AE waves due to rock deformation. Construction Building Mater, 2001, 15(5-6): 235 doi: 10.1016/S0950-0618(00)00073-8
|
[8] |
Carpinteri A, Corrado M, Lacidogna G. Heterogeneous materials in compression: correlations between absorbed, released and acoustic emission energies. Eng Fail Anal, 2013, 33: 236 doi: 10.1016/j.engfailanal.2013.05.016
|
[9] |
肖福坤, 劉剛, 秦濤, 等. 拉−壓−剪應力下細砂巖和粗砂巖破裂過程聲發射特性研究. 巖石力學與工程學報, 2016, 35(增刊2): 3458
Xiao F K, Liu G, Qin T, et al. Acoustic emission (AE) characteristics of fine sandstone and coarse sandstone fracture process under tension-compression-shear stress. Chin J Rock Mech Eng, 2016, 35(Suppl 2): 3458
|
[10] |
Wang H J, Liu D A, Cui Z D, et al. Investigation of the fracture modes of red sandstone using XFEM and acoustic emissions. Theor Appl Fract Mech, 2016, 85: 283 doi: 10.1016/j.tafmec.2016.03.012
|
[11] |
曾鵬, 劉陽軍, 紀洪廣, 等. 單軸壓縮下粗砂巖臨界破壞的多頻段聲發射耦合判據和前兆識別特征. 巖土工程學報, 2017, 39(3):509 doi: 10.11779/CJGE201703015
Zeng P, Liu Y J, Ji H G, et al. Coupling criteria and precursor identification characteristics of multi-band acoustic emission of gritstone fracture under uniaxial compression. Chin J Geotech Eng, 2017, 39(3): 509 doi: 10.11779/CJGE201703015
|
[12] |
Bucheim W. Geophysical methods for the study of rock pressure in coal and potash salt mining//International Strata Control Congress. Leipzig, 1958: 222
|
[13] |
Rodríguez P, Celestino T B. Application of acoustic emission monitoring and signal analysis to the qualitative and quantitative characterization of the fracturing process in rocks. Eng Fract Mech, 2019, 210: 54 doi: 10.1016/j.engfracmech.2018.06.027
|
[14] |
梁昌玉, 吳樹仁, 李曉. 中低應變率范圍內單軸壓縮下花崗巖斷口細-微觀特征研究. 巖石力學與工程學報, 2015, 34(增刊1): 2977
Liang C Y, Wu S R, Li X. Research on micro-meso characteristics of granite fracture under uniaxial compression at low and intermediate strain rates. Chin J Rock Mech Eng, 2015, 34(Suppl 1): 2977
|
[15] |
Zhang Q B, Zhao J. Quasi-static and dynamic fracture behaviour of rock materials: Phenomena and mechanisms. Int J Fract, 2014, 189(1): 1 doi: 10.1007/s10704-014-9959-z
|
[16] |
Manthei G. Characterization of acoustic emission sources in a rock salt specimen under triaxial compression. Bull Seismological Soc Am, 2005, 95(5): 1674 doi: 10.1785/0120040076
|
[17] |
Alkan H, Cinar Y, Pusch G. Rock salt dilatancy boundary from combined acoustic emission and triaxial compression tests. Int J Rock Mech Min Sci, 2007, 44(1): 108 doi: 10.1016/j.ijrmms.2006.05.003
|
[18] |
李世愚, 和泰名, 尹祥礎. 巖石斷裂力學. 北京: 科學出版社, 2015
Li S Y, He T M, Yin X C. Rock Fracture Mechanics. Beijing: Science press, 2015
|
[19] |
Ohno K, Ohtsu M. Crack classification in concrete based on acoustic emission. Construction Build Mater, 2010, 24(12): 2339 doi: 10.1016/j.conbuildmat.2010.05.004
|
[20] |
臧紹先. 地震應力降與巖石破裂應力降. 地震學報, 1984, 6(2):182
Zang S X. Earthquake stress drop and the stress drops of rock fracture. Acta Seismologica Sinica, 1984, 6(2): 182
|
[21] |
Backers T, Stanchits S, Dresen G. Tensile fracture propagation and acoustic emission activity in sandstone: the effect of loading rate. Int J Rock Mech Min Sci, 2005, 42(7-8): 1094 doi: 10.1016/j.ijrmms.2005.05.011
|
[22] |
Mogi K. Study of elastic shocks caused by the fracture of heterogeneous materials and its relation to earthquake phenomena. Bull Earthquake Res Inst Univ Tokyo, 1962, 40: 125
|
[23] |
Scholz C H. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull Seismological Soc Am, 1968, 58(1): 399
|
[24] |
Burlini L, Vinciguerra S, Toro G D, et al. Seismicity preceding volcanic eruptions: new experimental insights. Geology, 2007, 35(2): 183 doi: 10.1130/G23195A.1
|
[25] |
Benson P M, Vinciguerra S, Meredith P G, et al. Laboratory simulation of volcano seismicity. Science, 2008, 322(5899): 249 doi: 10.1126/science.1161927
|
[26] |
Eaton D W, van der Baan M, Birkelo B, et al. Scaling relations and spectral characteristics of tensile microseisms: evidence for opening/closing cracks during hydraulic fracturing. Geophys J Int, 2014, 196(3): 1844 doi: 10.1093/gji/ggt498
|
[27] |
Mao W W, Towhata I. Monitoring of single-particle fragmentation process under static loading using acoustic emission. Appl Acoustics, 2015, 94: 39 doi: 10.1016/j.apacoust.2015.02.007
|
[28] |
Hull D. Fractography: Observing, Measuring and Interpreting Fracture Surface Topography. Cambridge: Cambridge University Press, 1999
|
[29] |
Zang A, Wagner C F, Dresen G. Acoustic emission, microstructure, and damage model of dry and wet sandstone stressed to failure. J Geophysl Res, 1996, 101(B8): 17507 doi: 10.1029/96JB01189
|