<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 41 Issue 11
Dec.  2019
Turn off MathJax
Article Contents
LI Dong, YIN Wan-zhong, SUN Chun-bao, ZHANG Rui-yang. The self-carrier effect of hematite in the flotation[J]. Chinese Journal of Engineering, 2019, 41(11): 1397-1404. doi: 10.13374/j.issn2095-9389.2018.11.05.004
Citation: LI Dong, YIN Wan-zhong, SUN Chun-bao, ZHANG Rui-yang. The self-carrier effect of hematite in the flotation[J]. Chinese Journal of Engineering, 2019, 41(11): 1397-1404. doi: 10.13374/j.issn2095-9389.2018.11.05.004

The self-carrier effect of hematite in the flotation

doi: 10.13374/j.issn2095-9389.2018.11.05.004
More Information
  • Corresponding author: E-mail: ldwdtxwd@163.com
  • Received Date: 2018-11-05
  • Publish Date: 2019-11-01
  • Finely disseminated iron ores are a type of refractory iron ores that exist in many regions in China, where fine grind is essential to liberate iron minerals from gangue. The flotation process of fine particles is plagued with losses of recovery and selectivity, which are due to the low collision efficiencies of fine particles with bubbles, mechanical/hydraulic entrainment, and high specific surface area. Carrier flotation, which is based on the carrier effect of coarse particles, is one of the effective methods for fine particle flotation. However, scarce information is available in the literature with regard to the " self-carrier” effect and mechanism of coarse hematite particles during flotation, which are necessary and beneficial for the efficient utilization of refractory iron ore resources. In this paper, micro-flotation test, optical microscopy analysis, E-DLVO theory calculations, and particle aggregation kinetics were used to study the self-carrier effect of hematite flotation in the sodium oleate system. Flotation results show that the recovery of coarse hematite (?106 + 45 μm) could be up to 90% when the sodium oleate concentration is over 15 mg·L?1. However, for fine hematite (?18 μm) particles, the flotation recovery and flotation rate are relatively low. The highest recovery of fine-coarse hematite mixtures is obtained when the fine and coarse hematite are approximately equal in mass ratio, thereby indicating that the self-carrier effects are strongest; meanwhile, the improvement of coarse particles for flotation recovery gradually weakens with excessive coarseness in the mixtures. Optical microscopy analysis and E-DLVO theory calculations show that the interaction energies and aggregation tendencies between fine and coarse hematite particles are stronger than those among the fine hematite particles, which might be the main reasons that coarse particles could enhance the flotation performance of fine hematite particles. However, excessive coarse particles could strengthen the grinding/attrition effects during the flotation, thereby possibly weakening the self-carrier effects of coarse particles and resulting in decreased flotation recovery.

     

  • loading
  • [1]
    陳雯. 貧細雜難選鐵礦石選礦技術進展. 金屬礦山, 2010(5):55

    Chen W. Technological process in processing low-grade fine-grained complicated refractory iron ores. Met Mine, 2010(5): 55
    [2]
    任愛軍, 孫傳堯, 朱陽戈. 變性淀粉在赤鐵礦陽離子反浮選脫硅中的抑制性能. 工程科學學報, 2017, 39(12):1815

    Ren A J, Sun C Y, Zhu Y G. Depressing capability of modified starches in the reverse flotation of quartz from hematite with cationic collectors. Chin J Eng, 2017, 39(12): 1815
    [3]
    Yin W Z, Yang X S, Zhou D P, et al. Shear hydrophobic flocculation and flotation of ultrafine Anshan hematite using sodium oleate. Trans Nonferrous Met Soc China, 2011, 21(3): 652 doi: 10.1016/S1003-6326(11)60762-0
    [4]
    Li W B, Zhou L B, Han Y X, et al. Effect of carboxymethyl starch on fine-grained hematite recovery by high-intensity magnetic separation: Experimental investigation and theoretical analysis. Powder Technol, 2019, 343: 270 doi: 10.1016/j.powtec.2018.11.024
    [5]
    Wang L, Peng Y, Runge K, et al. A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Miner Eng, 2015, 70: 77 doi: 10.1016/j.mineng.2014.09.003
    [6]
    Subrahmanyam T V, Forssberg K S E. Fine particles processing: shear-flocculation and carrier flotation-a review. Int J Miner Process, 1990, 30(3-4): 265 doi: 10.1016/0301-7516(90)90019-U
    [7]
    Ni C, Bu X N, Xia W C, et al. Observing slime-coating of fine minerals on the lump coal surface using particle vision and measurement. Powder Technol, 2018, 339: 434 doi: 10.1016/j.powtec.2018.08.034
    [8]
    Miettinen T, Ralston J, Fornasiero D. The limits of fine particle flotation. Miner Eng, 2010, 23(5): 420 doi: 10.1016/j.mineng.2009.12.006
    [9]
    Li D, Yin W Z, Liu Q, et al. Interactions between fine and coarse hematite particles in aqueous suspension and their implications for flotation. Miner Eng, 2017, 114: 74 doi: 10.1016/j.mineng.2017.09.012
    [10]
    Yao J, Yin W, Gong E. Depressing effect of fine hydrophobic particles on magnesite reverse flotation. Int J Miner Process, 2016, 149: 84 doi: 10.1016/j.minpro.2016.02.013
    [11]
    Hu Y H, Qiu G Z, Luo L, et al. Carrier flotation of ultrafine particle wolframite. Trans Nonferrous Met Soc China, 1994, 4(4): 10
    [12]
    Forbes E. Shear, selective and temperature responsive flocculation: a comparison of fine particle flotation techniques. Int J Miner Process, 2011, 99(1-4): 1 doi: 10.1016/j.minpro.2011.02.001
    [13]
    Shibata J, Fuerstenau D W. Flocculation and flotation characteristics of fine hematite with sodium oleate. Int J Miner Process, 2003, 72(1-4): 25 doi: 10.1016/S0301-7516(03)00085-1
    [14]
    Li H, Liu M X, Liu Q. The effect of non-polar oil on fine hematite flocculation and flotation using sodium oleate or hydroxamic acids as a collector. Miner Eng, 2018, 119: 105 doi: 10.1016/j.mineng.2018.01.004
    [15]
    邱冠周, 胡岳華, 王淀佐. 顆粒間的相互作用和細粒浮選. 長沙: 中南工業大學出版社, 1993

    Qiu G Z, Hu Y H, Wang D Z. Interaction of Particles and Flotation Techniques of Fine Particles. Changsha: Central South University of Technology Press, 1993
    [16]
    Yin W Z, Li D, Luo X M, et al. Effect and mechanism of siderite on reverse flotation of hematite. Int J Miner Metall Mater, 2016, 23(4): 373 doi: 10.1007/s12613-016-1246-8
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article views (1204) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频