Citation: | WANG Zhi-quan, SONG Ting-ting, YOU Yang, WANG Xue-lin, SHANG Cheng-jia, LIU Kun, CHEN Bin. Prior austenite orientation reconstruction of coherently transformed products and its application on austenite twinning[J]. Chinese Journal of Engineering, 2018, 40(8): 945-953. doi: 10.13374/j.issn2095-9389.2018.08.008 |
[1] |
Guo Z, Lee C S, Morris J W. On coherent transformations in steel. Acta Mater, 2004, 52(19):5511
|
[4] |
Bowles J S, Mackenzie J K. The crystallography of martensite transformations I. Acta Metall, 1954, 2(1):129
|
[5] |
Furuhara T, Maki T. Variant selection in heterogeneous nucleation on defects in diffusional phase transformation and precipitation. Mater Sci Eng A, 2001, 312(1-2):145
|
[6] |
Gey N, Humbert M, Gautier E, et al. Study of the β→α variant selection for a zircaloy-4 rod heated to the β transus in presence or not of an axial tensile stress. J Nucl Mater, 2004, 328(2-3):137
|
[7] |
Stanford N, Bate P S. Crystallographic variant selection in Ti-6Al-4V. Acta Mater, 2004, 52(17):5215
|
[8] |
Morito S, Huang X, Furahara T, et al. The morphology and crystallography of lath martensite in alloy steels. Acta Mater, 2006, 54(19):5323
|
[10] |
Kurdjumow G, Sachs G. Vber den mechanismus der Stahlhärtung. Z Phys, 1930, 64(5-6):325
|
[11] |
Cayron C, Barcelo F, de Carlan Y. The mechanisms of the fcc-bcc martensitic transformation revealed by pole figures. Acta Mater, 2010, 58(4):1395
|
[13] |
Bouyne E, Flower H M, Lindley T C, et al. Use of EBSD technique to examine microstructure and cracking in a bainitic steel. Scripta Mater, 1998, 39(3):295
|
[14] |
Gourgues A F. Microtexture induced by the bainitic transformation in steels during welding:effect on the resistance to cleavage cracking. Mater Sci Forum, 2003, 426-432:3629
|
[15] |
Gourgues A F, Flower H M, Lindley T C. Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures. Mater Sci Technol, 2000, 16(1):26
|
[16] |
Kitahara H, Ueji R, Tsuji N, et al. Crystallographic features of lath martensite in low-carbon steel. Acta Mater, 2006, 54(5):1279
|
[18] |
Miyamoto G, Takayama N, Furuhara T. Accurate measurement of the orientation relationship of lath martensite and bainite by electron backscatter diffraction analysis. Scripta Mater, 2009, 60(12):1113
|
[19] |
Humbert M, Blaineau P, Germain L, et al. Refinement of orientation relations occurring in phase transformation based on considering only the orientations of the variants. Scripta Mater, 2011, 64(2):114
|
[20] |
Germain L, Gey N, Mercier R, et al. An advanced approach to reconstructing parent orientation maps in the case of approximate orientation relations:application to steels. Acta Mater, 2012, 60(11):4551
|
[21] |
Abbasi M, Nelson T W, Sorensen C D, et al. An approach to prior austenite reconstruction. Mater Charact, 2012, 66:1
|
[22] |
Bernier N, Bracke L, Malet L, et al. An alternative to the crystallographic reconstruction of austenite in steels. Mater Charact, 2014, 89:23
|
[23] |
Takayama N, Miyamoto G, Furuhara T. Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel. Acta Mater, 2012, 60(5):2387
|
[24] |
Miyamoto G, Iwata N, Takayama N, et al. Mapping the parent austenite orientation reconstructed from the orientation of martensite by EBSD and its application to ausformed martensite. Acta Mater, 2010, 58(19):6393
|