<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 40 Issue 3
Mar.  2018
Turn off MathJax
Article Contents
TANG Xian, ZHANG Lei, WANG Zhu, ZHANG Zi-ru, XUE Jun-peng, LU Min-xu. Effect of SO42- on the passive and pitting behavior of 316L austenite stainless steel in a Cl--containing solution[J]. Chinese Journal of Engineering, 2018, 40(3): 366-372. doi: 10.13374/j.issn2095-9389.2018.03.013
Citation: TANG Xian, ZHANG Lei, WANG Zhu, ZHANG Zi-ru, XUE Jun-peng, LU Min-xu. Effect of SO42- on the passive and pitting behavior of 316L austenite stainless steel in a Cl--containing solution[J]. Chinese Journal of Engineering, 2018, 40(3): 366-372. doi: 10.13374/j.issn2095-9389.2018.03.013

Effect of SO42- on the passive and pitting behavior of 316L austenite stainless steel in a Cl--containing solution

doi: 10.13374/j.issn2095-9389.2018.03.013
  • Received Date: 2017-07-07
  • The effect of SO42- on the passive and pitting behavior of 316L austenite stainless steel was investigated in a Cl--containing solution using potentiodynamic polarization tests, electrochemical impedance spectroscopy tests, potentiostatic polarization tests, and galvanostatic polarization tests. In addition, scanning electron microscopy was used to observe the pitting morphology. The results show that the increased SO42- concentration increases the passive region of 316L, makes the pitting potential more positive, and decreases the current density, indicating an improved pitting resistance. However, the pitting morphology shows a more complicated trend, and the roughness of the pits increases with the increased SO42- concentration after pitting occurred.

     

  • loading
  • [2]
    Wang Q Y, Wang X Z, Luo H, et al. A study on corrosion behaviors of Ni-Cr-Mo laser coating, 316 stainless steel and X70 steel in simulated solutions with H2S and CO2. Surf Coat Technol, 2016, 291:250
    [3]
    Hu X M, Neville A. CO2 erosion-corrosion of pipeline steel (API X65) in oil and gas conditions——a systematic approach. Wear, 2009, 267(11):2027
    [6]
    Al-Sulaiman S, Al-Shamari A, Al-Mithin A, et al. Assessing the possibility of hydrogen damage in crude oil processing equipment//NACE Corrosion 2010. San Antonio, 2010:10176
    [8]
    He W, Knudsen O Ø, Diplas S. Corrosion of stainless steel 316L in simulated formation water environment with CO2-H2S-Cl-. Corros Sci, 2009, 51(12):2811
    [10]
    El Sherbini E E F, El Rehim S S A. Pitting corrosion of zinc in Na2SO4, solutions and the effect of some inorganic inhibitors. Corros Sci, 2000, 42(5):785
    [11]
    Böhni H, Uhlig H H. Environmental factors affecting the critical pitting potential of aluminum. J Electrochem Soc, 1969, 116(7):906
    [12]
    Pyun S I, Park J J. Fractal analysis of pit morphology of Inconel alloy 600 in sulphate, nitrate and bicarbonate ion-containing sodium chloride solution at temperatures of 25-100℃. J Solid State Electrochem, 2004, 8(5):296
    [13]
    Pyun S I, Na K H, Lee W J, et al. Effects of sulfate and nitrate ion additives on pit growth of pure aluminum in 0.1 M sodium chloride solution. Corrosion, 2000, 56(10):1015
    [16]
    Niu L B, Nakada K. Effect of chloride and sulfate ions in simulated boiler water on pitting corrosion behavior of 13Cr steel. Corros Sci, 2015, 96:171
    [18]
    Sánchez M, Gregori J, Alonso C, et al. Electrochemical impedance spectroscopy for studying passive layers on steel rebars immersed in alkaline solutions simulating concrete pores. Electrochim Acta, 2007, 52(27):7634
    [19]
    Freire L, Carmezim M J, Ferreira M G S, et al. The passive behavior of AISI 316 in alkaline media and the effect of pH:a combined electrochemical and analytical study. Electrochim Acta, 2010, 55(21):6174
    [21]
    Frankel G S. Errata:"Pitting corrosion of metals. A review of the critical factors". J Electrochem Soc, 1998, 145(8):2970
    [22]
    Soltis J. Passivity breakdown, pit initiation and propagation of pits in metallic materials——review. Corros Sci, 2015, 90:5
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (763) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频