Citation: | AO Yong-tao, XU Jun, WU Shun-chuan, Lü Jian-hua, CHEN Wen. An intelligent identification method to detect tunnel defects based on the multidimensional analysis of GPR reflections[J]. Chinese Journal of Engineering, 2018, 40(3): 293-301. doi: 10.13374/j.issn2095-9389.2018.03.005 |
[4] |
Baryshnikov V D, Khmelin A P, Denisova E V. GPR detection of inhomogeneities in concrete lining of underground tunnels. J Min Sci, 2014, 50(1):25
|
[8] |
Fadi A A. An Automated Framework for Defect Detection in Concrete Bridge Decks Using Fractals and Independent Component Analysis[Dissertation]. Michigan:Western Michigan University, 2010
|
[9] |
Cui Y A, Wang L, Xiao J P. Automatic feature recognition for GPR image processing. Int J Comput Inf Eng, 2010, 4(1):14
|
[11] |
Al-Nuaimy W, Huang Y, Nakhkash M, et al. Automatic detection of buried utilities and solid objects with GPR using neural networks and pattern recognition. J Appl Geophys, 2000, 43(24):157
|
[12] |
Maas C, Schmalzl J. Using pattern recognition to automatically localize reflection hyperbolas in data from ground penetrating radar. Comput Geosci, 2013, 58:116
|
[13] |
Laurence M, Raffaele P, Loredana M, et al. Automated detection of reflection hyperbolas in complex GPR images with no a priori knowledge on the medium. IEEE Trans Geosci Remote Sens, 2016, 54(1):580
|
[15] |
Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond A, 1998, 454:903
|