<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 40 Issue 2
Feb.  2018
Turn off MathJax
Article Contents
CHAI Xi-yang, GAO Zhi-yu, PAN Tao, CHAI Feng, YANG Zhi-gang, YANG Cai-fu. Constitutive equation for flow behavior of commercially pure titanium TA2 during hot deformation[J]. Chinese Journal of Engineering, 2018, 40(2): 226-232. doi: 10.13374/j.issn2095-9389.2018.02.013
Citation: CHAI Xi-yang, GAO Zhi-yu, PAN Tao, CHAI Feng, YANG Zhi-gang, YANG Cai-fu. Constitutive equation for flow behavior of commercially pure titanium TA2 during hot deformation[J]. Chinese Journal of Engineering, 2018, 40(2): 226-232. doi: 10.13374/j.issn2095-9389.2018.02.013

Constitutive equation for flow behavior of commercially pure titanium TA2 during hot deformation

doi: 10.13374/j.issn2095-9389.2018.02.013
  • Received Date: 2017-05-02
  • The hot deformation behavior of TA2, which is commercially pure titanium, was investigated using a Gleeble-3800 simulator over temperature and strain ranges of 750-1000℃ and 0.01-10 s-1, respectively. The results show that during hot compressive deformation, work hardening, dynamic recovery, and dynamic recrystallization occur. The flow stress increases as temperature decreases and strain rate increases. To accurately predict the flow behavior for the alloy, constitutive equations considering the effect of strain were derived based on the obtained experimental data and a hyperbolic sine Arrhenius-type model. The material constants α, n, Q, and lnA were found to be functions of strain and could be fitted by employing a sixth-order polynomial. Subsequently, the developed constitutive model can be employed to describe the deformation behavior of commercially pure titanium TA2.

     

  • loading
  • [2]
    Wei H L, Liu G Q, Zhang M H. Physically based constitutive analysis to predict flow stress of medium carbon and vanadium microalloyed steels. Mater Sci Eng A, 2014, 602: 127
    [3]
    Wei H L, Liu G Q, Xiao X, et al. Characterization of hot deformation behavior of a new microalloyed C-Mn-Al high-strength steel. Mater Sci Eng A, 2013, 564: 140
    [4]
    Xiao X, Liu G Q, Hu B F, et al. A comparative study on Arrhenius-type constitutive equations and artificial neural network model to predict high-temperature deformation behaviour in 12Cr3WV steel. Comput Mater Sci, 2012, 62: 227
    [5]
    Ferdowsi M R G, Nakhaie D, Benhangi P H, et al. Modeling the high temperature flow behavior and dynamic recrystallization kinetics of a medium carbon microalloyed steel. J Mater Eng Perform, 2014, 23(3): 1077
    [6]
    Mirzadeh H, Najafizadeh A, Moazeny M. Flow curve analysis of 17-4 PH stainless steel under hot compression test. Metall Mater Trans A, 2009, 40(12): 2950
    [7]
    Zhang D, Liu Y Z, Zhou L Y, et al. Dynamic recrystallization behavior of GCr15SiMn bearing steel during hot deformation. J Iron Steel Res Int, 2014, 21(11): 1042
    [8]
    Pu E X, Feng H, Liu M, et al. Constitutive modeling for flow behaviors of superaustenitic stainless steel S32654 during hot deformation. J Iron Steel Res Int, 2016, 23(2): 178
    [9]
    Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel. J Appl Phys, 1944, 15(1): 22
    [10]
    Chen Z Y, Xu S Q, Dong X H. Deformation behavior of AA6063 aluminium alloy after removing friction effect under hot working conditions. Acta Metall Sin (English Lett), 2008, 21(6): 451
    [11]
    Gao Z Y, Pan T, Wang Z, et al. Hot deformation behavior of a novel Ni-Cr-Mo-B ultra-heavy plate steel by hot compression test. J Iron Steel Res Int, 2015, 22(9): 818
    [12]
    McQueen H J, Ryan N D. Constitutive analysis in hot working. Mater Sci Eng A, 2002, 322(1-2): 43
    [13]
    McQueen H J, Yue S, Ryan N D, et al. Hot working characteristics of steels in austenitic state. J Mater Process Technol, 1995, 53(1-2): 293
    [14]
    Zhao H T, Liu G Q, Xu L. Rate-controlling mechanisms of hot deformation in a medium carbon vanadium microalloy steel. Mater Scie Eng A, 2013, 559: 262
    [15]
    Kopp R, Cho M L, de Souza M M. Multi-level simulation of metal-forming processes. Steel Res Int, 1988, 59(4): 161
    [16]
    Samantaray D, Mandal S, Bhaduri A K. A critical comparison of various data processing methods in simple uni-axial compression testing. Mater Des, 2011, 32(5): 2797
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (714) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频