<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 40 Issue 2
Feb.  2018
Turn off MathJax
Article Contents
ZHANG Guo-wen, ZUO Peng-peng, HE Xi-juan, SHENG Zhen-dong, WU Xiao-chun. Influence of Al on mechanical properties and carbides of quenched and tempered H11 steel[J]. Chinese Journal of Engineering, 2018, 40(2): 208-216. doi: 10.13374/j.issn2095-9389.2018.02.011
Citation: ZHANG Guo-wen, ZUO Peng-peng, HE Xi-juan, SHENG Zhen-dong, WU Xiao-chun. Influence of Al on mechanical properties and carbides of quenched and tempered H11 steel[J]. Chinese Journal of Engineering, 2018, 40(2): 208-216. doi: 10.13374/j.issn2095-9389.2018.02.011

Influence of Al on mechanical properties and carbides of quenched and tempered H11 steel

doi: 10.13374/j.issn2095-9389.2018.02.011
  • Received Date: 2017-06-09
  • H11 steel with mass fraction of Al (0.77% and 0) was treated by different quenching and tempering processes, and the variation of hardness and impact energy were systematically investigated. Moreover, carbide extraction at annealed, 1060℃ quenched, 1060℃ quenched + 510℃ tempered, 1060℃ quenched + 560℃ tempered, and 1060℃ quenched + 600℃ tempered were conducted. Finally, the type and morphology of carbides were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The main conclusions are as follows:(1) Al can improve the impact toughness and tempering hardness of H11 steel; however, it reduces the hardness of quenching. (2) Al can promote the dissolution of carbides and the homogeneity of elements during the austenitizing process. (3) Al can prevent the precipitation and accumulation of carbides during the tempering process, which is more obvious under 560℃. (4) Al can prevent the accumulation of carbon and alloy elements, such that (Fe,Cr)2C, MoC and Cr7C3 become more stable and suppresses the precipitation of (Fe,Cr)3C, Mo2C, and Cr23C6 during the tempering process.

     

  • loading
  • [1]
    Delagnes D, Lamesle P, Mathon M H, et al. Influence of silicon content on the precipitation of secondary carbides and fatigue properties of a 5%Cr tempered martensitic steel. Mater Sci Eng A, 2005, 394(1-2): 435
    [3]
    Suh D W, Park S J, Oh C S, et al. Influence of partial replacement of Si by Al on the change of phase fraction during heat treatment of TRIP steels. Scripta Mater, 2007, 57(12): 1097
    [4]
    Peng H F, Song X, Gao A G, et al. Microstructure and mechanical properties of the Al-added ultrahigh carbon steel. Mater Lett, 2005, 59(26): 3330
    [5]
    Zhang X, Fan L J, Xu Y L, et al. Effect of aluminum on microstructure, mechanical properties and pitting corrosion resistance of ultra-pure 429 ferritic stainless steels. Mater Des, 2015, 65: 682
    [6]
    Traint S, Pichler A, Hauzenberger K, et al. Influence of silicon, aluminium, phosphorus and copper on the phase transformations of low alloyed TRIP-steels. Steel Res Int, 2002, 73(6-7): 259
    [8]
    Wu K M, Bhadeshia H K D H. Extremely fine pearlite by continuous cooling transformation. Scripta Mater, 2012, 67(1): 53
    [9]
    Palizdar Y, Scott A J, Cochrane R C, et al. Understanding the effect of aluminium on microstructure in low level nitrogen steels. Mater Sci Technol, 2009, 25(10): 1243
    [10]
    Li S S, Liu Y H, Song Y L, et al. Simplification of heat treatment process in a tool steel by aluminium addition. Mater Sci Technol, 2016, 32(15): 1597
    [11]
    Boc I, Grof T. The core-loss reducing effect of aluminum in non-oriented Fe-Si steels. IEEE Trans Magn, 1986, 22(5): 517
    [15]
    Torres H, Varga M, Ripoll M R. High temperature hardness of steels and iron-based alloys. Mater Sci Eng A, 2016, 671: 170
    [16]
    Danoix F, Danoix R, Akre J, et al. Atom probe tomography investigation of assisted precipitation of secondary hardening carbides in a medium carbon martensitic steels. J Microsc, 2011, 244(3): 305
    [17]
    Qian L H, Zhou Q, Zhang F C, et al. Microstructure and mechanical properties of a low carbon carbide-free bainitic steel co-alloyed with Al and Si. Mater Des, 2012, 39: 264
    [18]
    Souki I, Delagnes D, Lours P. Influence of heat treatment on the fracture toughness and crack propagation in 5% Cr martensitic steel. Procedia Eng, 2011, 10: 631
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (737) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频