<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 40 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
CHEN Ping-hu, LI Rui-qing, ZENG Song-sheng, LI Xiao-qian. High temperature oxidation behavior of high-vanadium wear resistant alloy in different cooling approaches[J]. Chinese Journal of Engineering, 2018, 40(1): 84-91. doi: 10.13374/j.issn2095-9389.2018.01.011
Citation: CHEN Ping-hu, LI Rui-qing, ZENG Song-sheng, LI Xiao-qian. High temperature oxidation behavior of high-vanadium wear resistant alloy in different cooling approaches[J]. Chinese Journal of Engineering, 2018, 40(1): 84-91. doi: 10.13374/j.issn2095-9389.2018.01.011

High temperature oxidation behavior of high-vanadium wear resistant alloy in different cooling approaches

doi: 10.13374/j.issn2095-9389.2018.01.011
  • Received Date: 2017-06-07
  • The oxidation mass increasing method was adopted to explore the oxidation behavior of high-vanadium wear-resistant alloy at 950℃. The oxidation mechanism and cracks behavior were studied with different cooling types (furnace cooling and air cooling). The results indicated that the weight increment per unit area was obviously large at the beginning of the oxidation due to the matrix being in direct contact with the air. Additionally, the oxidation increase gains of furnace and air cooling were 82.7 mg·cm-2 and 39.1 mg·cm-2, respectively, after 8 h of oxidation. At the same time, the preferential formation of Cr2O3 was observed with 50-200 nm at the matrix and oxidation layer interface. Remarkable thermal stress was produced in the oxidation layer due to the larger cooling rate. The warped phenomenon appeared at the oxidation layer due to the production of growth stress. However, the shedding phenomenon rarely occurred in the oxide layer.

     

  • loading
  • [1]
    Moskalyk R R, Alfantazi A M. Processing of vanadium:a review. Miner Eng, 2003, 16(9):793
    [2]
    Lee D G, Lee K, Lee S. Effects of tempering on microstructure, hardness, and fracture toughness of VC/steel surface composite fabricated by high-energy electron beam irradiation. Surf Coat Technol, 2006, 201(3-4):1296
    [3]
    Zhao W M, Liu Z X, Ju Z L, et al. Effects of vanadium and rareearth on carbides and properties of high chromium cast iron. Mater Sci Forum, 2008, 575-578:1414
    [4]
    Ye F X, Hojamberdiev M, Xu Y H, et al. (Fe,Cr)7C3/Fe surface gradient composite:microstructure, microhardness, and wear resistance. Mater Chem Phys, 2014, 147(3):823
    [6]
    Brady M P, Yamamoto Y, Santella M L, et al. Effects of minor alloy additions and oxidation temperature on protective alumina scale formation in creep-resistant austenitic stainless steels. Scripta Mater, 2007, 57(12):1117
    [7]
    Kusumoto K, Shimizu K, Yaer X, et al. High erosion-oxidation performance of Fe-based Nb or V containing multi-component alloys with Co addition at 1173 K. Mater Des, 2015, 88:366
    [8]
    Gao P H, Cao S T, Li J P, et al. High temperature oxidation resistance of M42C stainless steel coatings deposited on the surface of cast iron through atmospheric plasma spraying. J Alloys Compd, 2016, 684:188
    [9]
    Abe F, Kutsumi H, Haruyama H, et al. Improvement of oxidation resistance of 9 mass% chromium steel for advanced-ultra supercritical power plant boilers by pre-oxidation treatment. Corros Sci, 2016, 114:1
    [10]
    Li D S, Dai Q X, Cheng X N, et al. High-temperature oxidation resistance of austenitic stainless steel Crl8Nil 1Cu3Al3MnNb. J Iron Steel Res Int, 2012, 19(5):74
    [11]
    Li R, Zhou Z, He D Y, et al. Microstructure and high-temperature oxidation behavior of wire-arc sprayed Fe-based coatings. Surf Coat Technol, 2014, 251:186
    [12]
    Krüger M. High temperature compression strength and oxidation of a V-9Si-13B alloy. Scripta Mater, 2016, 121:75
    [13]
    Luo X X, Yao Z J, Zhang P Z, et al. A study on high temperature oxidation behavior of double glow plasma surface metallurgy Fe-Al-Cr alloyed layer on Q235 steel. Appl Surf Sci, 2014, 305:259
    [14]
    Chattopadhyay B, Wood G C. The transient oxidation of alloys. Oxid Met, 1970, 2(4):373
    [15]
    Huntz A M, Schütze M. Stresses generated during oxidation sequences and high temperature fracture. Mater High Temp, 1994, 12(2-3):151
    [16]
    Yang F, Liu B, Fang D N. Analysis on high-temperature oxidation and growth stress of iron-based alloy using phase field method. Appl Math Mech, 2011, 32(6):757
    [17]
    Panicaud B, Grosseau-Poussard J L, Dinhut J F. On the growth strain origin and stress evolution prediction during oxidation of metals. Appl Surf Sci, 2006, 252(16):5700
    [18]
    Chen J W, Jiang Z, Mu H, et al. Simulation on the thermal stress of super304H oxidation scale at 600℃. Adv Mater Res, 2015, 1065-1069:1934
    [19]
    Ren C, He Y D, Wang D R. Fabrication and characteristics of YSZ-YSZ/Al2O3 double-layer TBC. Oxid Met, 2011, 75(5-6):325
    [20]
    Xu C H, Gao W. Pilling-bedworth ratio for oxidation of alloys. Mater Res Innovations, 2000, 3(4):231
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (702) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频