<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 40 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
ZUO Peng-peng, WU Xiao-chun, ZENG Yan, HE Xi-juan. Strain-controlled thermal-mechanical fatigue behavior of 4Cr5MoSiV1 hot work die steel[J]. Chinese Journal of Engineering, 2018, 40(1): 76-83. doi: 10.13374/j.issn2095-9389.2018.01.010
Citation: ZUO Peng-peng, WU Xiao-chun, ZENG Yan, HE Xi-juan. Strain-controlled thermal-mechanical fatigue behavior of 4Cr5MoSiV1 hot work die steel[J]. Chinese Journal of Engineering, 2018, 40(1): 76-83. doi: 10.13374/j.issn2095-9389.2018.01.010

Strain-controlled thermal-mechanical fatigue behavior of 4Cr5MoSiV1 hot work die steel

doi: 10.13374/j.issn2095-9389.2018.01.010
  • Received Date: 2017-03-13
  • In-phase (IP) and out-of-phase (OP) thermal-mechanical fatigue (TMF) tests of 4Cr5MoSiV1 hot work die steel were conducted in full reverse mechanical strain control in the temperature range of 400-700℃ by a TMF servo-hydraulic testing system (MTS®). The results indicate that, when the strain amplitude is ±0.50%, the OP TMF life of 4Cr5MoSiV1 steel is~60% of the IP TMF life. The stress-strain hysteresis loops show asymmetries for both IP and OP loading. IP loading leads to comprehensive mean stress, while OP loading gives rise to tensile mean stress in the temperature range of 400-700℃. The changes of maximum strain and peak temperature with maximum stress are inconsistent, and the stress relaxation phenomenon could be observed under IP and OP loading. Moreover, two kinds of TMF cycling exhibite continuous cyclic softening in the high temperature half stage, while in the low temperature half stage, cyclic hardening occurs initially and is then followed by continuous cyclic softening. The fractured surfaces under IP TMF loading display striation and tear ridge, and exhibits quasi-cleavage characteristics. In addition, the cracks are less but longer. However, fractured surfaces under OP TMF loading mainly display striation and dimple characteristics, and the cracks are shorter and more abundant.

     

  • loading
  • [1]
    Persson A, Hogmark S, Bergström J. Simulation and evaluation of thermal fatigue cracking of hot work tool steels. Int J Fatigue, 2004, 26(10):1095
    [3]
    Nagao Y, Knoerr M, Altan T. Improvement of tool life in cold forging of complex automotive parts. J Mater Process Technol, 1994, 46(1-2):73
    [8]
    Jiang Q C, Fang J R, Guan Q F. Thermomechanical fatigue behavior of Cr-Ni-Mo cast hot work die steel. Scripta Mater, 2001, 45(2):199
    [9]
    Fang J R, Jiang Q C, Guan Q F, et al. The characteristics of fatigue under isothermal and thermo-mechanical load in Cr-Ni-Mo cast hot work die steel. Fatigue Fract Eng Mater Struct, 2002, 25(5):481
    [10]
    Oudin A, Lamesle P, Penazzi L, et al. Thermomechanical fatigue behaviour and life assessment of hot work tool steels. Eur Struct Integr Soc, 2002, 29:195
    [11]
    Sjöström J, Bergström J. Thermal fatigue testing of chromium martensitic hot-work tool steel after different austenitizing treatments. J Mater Process Technol, 2004, 153-154:1089
    [14]
    Huang Z W, Wang Z G, Zhu S J, et al. Thermomechanical fatigue behavior and life prediction of a cast nickel-based superalloy. Mater Sci Eng A, 2006, 432(1-2):308
    [15]
    Fang D N, Berkovits A. Mean stress models for low-cycle fatigue of a nickel-base superalloy. Int J Fatigue, 1994, 16(6):429
    [16]
    Yang F M, Sun X F, Guan H R, et al. On the low cycle fatigue deformation of K40S cobalt-base superalloy at elevated temperature. Mater Lett, 2003, 57(19):2823
    [17]
    Rao K B S, Schiffers H, Schuster H, et al. Influence of time and temperature dependent processes on strain controlled low cycle fatigue behavior of alloy 617. Metall Trans A, 1988, 19(2):359
    [18]
    Mishnev R, Dudova N, Kaibyshev R. Low cycle fatigue behavior of a 10% Cr martensitic steel at 600℃. ISIJ Int, 2015, 55(11):2469
    [19]
    Mishnev R, Dudova N, Kaibyshev R. Low cycle fatigue behavior of a 10Cr-2W-Mo-3Co-NbV steel. Int J Fatigue, 2016, 83:344
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (1501) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频