Citation: | YAN Dong-yang, MING Dong-ping. Object-oriented remote sensing image segmentation based on automatic multiseed region growing algorithm[J]. Chinese Journal of Engineering, 2017, 39(11): 1735-1742. doi: 10.13374/j.issn2095-9389.2017.11.017 |
[3] |
Vincent L, Soille P. Watersheds in digital spaces:an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Machine Intelligence, 1991, 13(6):583
|
[4] |
Li B R, Pan M, Wu Z X. An improved segmentation of high spatial resolution remote sensing image using Marker-based Watershed Algorithm//201220th International Conference on Geoinformatics. Hong Kong, 2012:1
|
[6] |
Lin G, Adiga U, Olson K, et al. A hybrid 3D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks. Cytometry Part A, 2003, 56(1):23
|
[7] |
Adams R, Bischof L. Seeded region growing. IEEE Trans Pattern Anal Machine Intelligence, 1994, 16(6):641
|
[8] |
Shih F Y, Cheng S X. Automatic seeded region growing for color image segmentation. Image Vision Comput, 2005, 23(10):877
|
[9] |
Han X U. Research on remote sensing image segmentation technology based on improved seeded region growing method. Int J Digital Content Technol Appl, 2013, 7(8):371
|
[10] |
Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybernetics, 1979, 9(1):62
|
[15] |
Chen Y X, Han C S. A modified region growing algorithm for multi-colored image object segmentation. Chin Opt Lett, 2007, 5(1):25
|
[19] |
Tan K S, Isa N A M, Wei H L. Color image segmentation using adaptive unsupervised clustering approach. Appl Soft Computing, 2013, 13(4):2017
|
[20] |
Espindola G M, Camara G, Reis I A, et al. Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation. Int J Remote Sensing, 2006, 27(14):3035
|