<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 11
Nov.  2017
Turn off MathJax
Article Contents
WANG Bao, LIN Xuan-yu, HUANG Shuo, GAO Xin, YAO Long-hui, YUE Hong-yan. Electrochemical determination of folic acid using carbon/ZnO nanowire arrays/graphene foam[J]. Chinese Journal of Engineering, 2017, 39(11): 1647-1652. doi: 10.13374/j.issn2095-9389.2017.11.006
Citation: WANG Bao, LIN Xuan-yu, HUANG Shuo, GAO Xin, YAO Long-hui, YUE Hong-yan. Electrochemical determination of folic acid using carbon/ZnO nanowire arrays/graphene foam[J]. Chinese Journal of Engineering, 2017, 39(11): 1647-1652. doi: 10.13374/j.issn2095-9389.2017.11.006

Electrochemical determination of folic acid using carbon/ZnO nanowire arrays/graphene foam

doi: 10.13374/j.issn2095-9389.2017.11.006
  • Received Date: 2017-03-07
  • Three-dimensional (3D) graphene foam (GF) was synthesized by chemical vapor deposition (CVD). Following this, ZnO nanowire arrays (ZnO NWAs) were grown on the 3D GF by hydrothermal synthesis. Finally, carbon (C) was deposited on the surface of ZnO NWAs by CVD to obtain a C/ZnO NWAs/GF hybrid. This composite was used to detect the presence of folic acid. The experimental results show that the GF inherits the 3D macroporous structure of nickel foam and that the ZnO NWAs are uniformly and vertically grown on the 3D GF. The length and diameter of the ZnO nanowires are~50 nm and 2 μm, respectively. Carbon is deposited on the surface of ZnO NWAs, and the C/ZnO NWAs/GF is used as a working electrode to detect folic acid (FA) using an electrochemical method. The experimental results show that the sensitivity of the electrode for FA is 0.13 μA·μmol-1·L and it has good selectivity for detecting FA in the presence of uric acid. The electrode also has excellent reproducibility and stability.

     

  • loading
  • [1]
    Asaikkutti A, Bhavan P S, Vimala K. Effects of different levels of dietary folic acid on the growth performance, muscle composition, immune response and antioxidant capacity of freshwater prawn, Macrobrachium rosenbergii. Aquaculture, 2016, 464:136
    [2]
    Cheung R H F, Morrison P D, Small D M, et al. Investigation of folic acid stability in fortified instant noodles by use of capillary electrophoresis and reversed-phase high performance liquid chromatography. J Chromatogr A, 2008, 1213(1):93
    [3]
    Phillips K M, Ruggio D M, Haytowitz D B. Folate composition of 10 types of mushrooms determined by liquid chromatography-mass spectrometry. Food Chem, 2011, 129(2):630
    [4]
    Kirsch S H, Knapp J P, Herrmann W, et al. Quantification of key folate forms in serum using stable-isotope dilution ultra performance liquid chromatography-tandem mass spectrometry. J Chromatogr B, 2010, 878(1):68
    [5]
    Shishehbore M R, Sheibani A, Haghdost A. Kinetic spectrophotometric method as a new strategy for the determination of vitamin B9 in pharmaceutical and biological samples. Spectrochim Acta A, 2011, 81(1):304
    [6]
    Akhtar M J, Khan M A, Ahmad I. Identification of photoproducts of folic acid and its degradation pathways in aqueous solution. J Pharm Biomed Anal, 2003, 31(3):579
    [7]
    Zhang B T, Zhao L X, Lin J M. Determination of folic acid by chemiluminescence based on peroxomonosulfate-cobalt (Ⅱ) system. Talanta, 2008, 74(5):1154
    [8]
    Blanco C C, Carretero A S, Gutierrez A F, et al. Fluorometric determination of folic acid based on its reaction with the fluorogenic reagent fluorescamine. Anal Lett, 1994, 27(7):1339
    [9]
    Arcot J, Shrestha A K, Gusanov U. Enzyme protein binding assay for determining folic acid in fortified cereal foods and stability of folic acid under different extraction conditions. Food Control, 2002, 13(4-5):245
    [10]
    Chen A C, Shah B. Electrochemical sensing and biosensing based on square wave voltammetry. Anal Methods, 2013, 5:2158
    [11]
    KHan M, Tahir M N, Adil S F, et al. Graphene based metal and metal oxide nanocomposites:synthesis, properties and their applications. J Mater Chem A, 2015, 3:18753
    [12]
    Yue H Y, Huang S, Chang J, et al. ZnO nanowire arrays on 3D hierachical graphene foam:biomarker detection of Parkinson's disease. Acs Nano, 2014, 8(2):1639
    [13]
    Liu X W, Hu Q Y, Wu Q, et al. Aligned ZnO nanorods:a useful film to fabricate amperometric glucose biosensor. Colloid Surface B, 2009, 74(1):154
    [14]
    Ma S W, Liao Q L, Liu H S, et al. An excellent enzymatic lactic acid biosensor with ZnO nanowires-gated AlGaAs/GaAs high electron mobility transistor. Nanoscale, 2012, 4:6415
    [15]
    Ma S W, Zhang X H, Liao Q L, et al. Enzymatic lactic acid sensing by In-doped ZnO nanowires functionalized AlGaAs/GaAs high electron mobility transistor. Sens Actuators B:Chem, 2015, 212:41
    [16]
    Vayssieres L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv Mater, 2003, 15(5):464
    [17]
    Ahmad M, Zhu J. ZnO based advanced functional nanostructures:synthesis, properties and applications. J Mater Chem, 2011, 21:599
    [18]
    Zhan H L, Garrett D J, Apollo N V, et al. Direct fabrication of 3D graphene on nanoporous anodic alumina by plasma-enhanced chemical vapor deposition. Sci Rep, 2016, 6:19822.
    [19]
    Chen Z P, Ren W C, Gao L B, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater, 2011, 10(6):424
    [20]
    Babaei A, Babazadeh M. A selective simultaneous determination of levodopa and serotonin using a glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite. Electroanalysis, 2011, 23(7):1726
    [21]
    Taei M, Jamshidi M. Highly selective determination of ascorbic acid, epinephrine,and uric acid by differential pulse voltammetry using poly(Adizol Black B)-modified glassy carbon electrode. J Solid State Electrochem, 2014, 18(3):673
    [22]
    O'Shea T J, Garcia A C, Blanco P T, et al. Electrochemical pretreatment of carbon fibre microelectrodes for the determination of folic acid. J Electroanal Chem Interf Electrochem, 1991, 307(1-2):63
    [23]
    Beitollahi H, Hamzavi M, Torkzadeh-Mahani M. Electrochemical determination of hydrochlorothiazide and folic acid in real samples using amodified graphene oxide sheet paste electrode. Mater Sci Eng C, 2015, 52:297
    [24]
    Mazloum-Ardakani M, Beitollahi H, Amini M K, et al. Simultaneous and selective voltammetric determination of epinephrine, acetaminophen and folic acid at a ZrO2 nanoparticles modified carbon paste electrode. Anal Methods, 2011, 3:673
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (813) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频