<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 11
Nov.  2017
Turn off MathJax
Article Contents
YUAN Lei, WANG He-jin, AN Jia-li, ZHANG Nan, WANG Guan-yu. Preferred orientation of hydroxylapatite in the scales and fins of seawater Lateolabrax japonicus determined using XRD pole figures and ODF[J]. Chinese Journal of Engineering, 2017, 39(11): 1617-1625. doi: 10.13374/j.issn2095-9389.2017.11.002
Citation: YUAN Lei, WANG He-jin, AN Jia-li, ZHANG Nan, WANG Guan-yu. Preferred orientation of hydroxylapatite in the scales and fins of seawater Lateolabrax japonicus determined using XRD pole figures and ODF[J]. Chinese Journal of Engineering, 2017, 39(11): 1617-1625. doi: 10.13374/j.issn2095-9389.2017.11.002

Preferred orientation of hydroxylapatite in the scales and fins of seawater Lateolabrax japonicus determined using XRD pole figures and ODF

doi: 10.13374/j.issn2095-9389.2017.11.002
  • Received Date: 2017-01-12
  • Pole figures measured using X-ray diffractometry were used to analyze the orientation of crystalline hydroxylapatite (HAP) in the scales and fins of seawater Lateolabrax japonicus. An orientation distribution function (ODF) was calculated based on the pole figures of the lattice planes (002),(130), and (211) of HAP in the scales and those of (031),(120), and (132) in the fins. The pole figures indicate that the c-axis of HAP prefers three primary orientations in the scales and five primary orientations in the fins. In the scales, the preferred orientations of the HAP c-axis are parallel to the normal line of the scale face and intersect the normal line at about 39° and 63°. In the fins, the HAP c-axis intersects the normal line of the cross-section at 3°, 9°, 17°, 24°, and 36°. However, the calculated ODFs show that the preferred orientations of the HAP c-axes are nearly parallel to the face of the scales and perpendicular to the cross-section of the fins. As the pole figure only reflects a two-dimensional projection of the crystalline orientations, the preferred orientations determined by the pole figures are not very accurate. Conversely, three-dimensional ODF is more suitable for analyzing the preferred orientation of biominerals than the two-dimensional projection. The tendency of the c-axis to be parallel to the collagen fibers is controlled by organic matter and provides a good mechanical performance in hard tissue.

     

  • loading
  • [1]
    Lichtenegger H C, Schöberl T, Bartl M H, et al. High abrasion resistance with sparse mineralization:copper biomineral in worm jaws. Science, 2002, 298(5592):389
    [2]
    Aizenberg J, Tkachenko A, Weiner S, et al. Calcitic microlenses as part of the photoreceptor system in brittlestars. Nat, 2001, 412(6849):819
    [3]
    Wang L Z, Zhang H Q, Fan Y B. Comparative study of the mechanical properties, microstructure, and composition of the cranial and beak bones of the great spotted woodpecker and the lark bird. Sci China Life Sci, 2011, 54(11):1036
    [7]
    Heilbronner R, Tullis J. Evolution of c-axis pole figures and grain size during dynamic recrystallization:results from experimentally sheared quartzite. J Geophys Res:Solid Earth, 2006, 111(B10):B10202.1
    [9]
    Mann S. Biomineralization:Principals and Concepts in Bioinorganic Materials Chemistry. Oxford:Oxford University Press, 2001
    [10]
    He J H, Zhao S R, Yang M X. Preferred orientation of aragonite in nacre of pinctada martensii shell determined by electron backscatter diffraction. Chin J Inorg Chem, 2014, 30(10):2252
    [11]
    Heilbronner R P. The autocorrelation function:an image processing tool for fabric analysis. Tectonophysics, 1992, 212(3-4):351
    [13]
    Li M J, Liu X L, Liu Y T, et al. Texture evolution and mechanical properties of Mg/Al multilayered composite sheets processed by accumulative roll bonding. Acta Metall Sin, 2016, 52(4):463
    [18]
    Bunge H J. Texture Analysis in Materials Science. London:Butterworths Press, 1982
    [20]
    Roe R J. Description of crystallite orientation in polycrystalline materials. Ⅲ. General solution to pole figure inversion. J Appl Phys, 1965, 36(6):2024
    [21]
    Bunge H J. Technological applications of texture analysis. Zeitschrift fuer Metallkunde, 1985, 76(7):457
    [27]
    Hoang Q Q, Sicheri F, Howard A J, et al. Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature, 2003, 425(6961):977
    [29]
    Weiner S, Wagner H D. The material bone:structure-mechanical function relations. Annu Rev Mater Sci, 1998, 28:271
    [30]
    Landis W J, Song M J, Leith A, et al. Mineral and organic matrix interaction in normally calcifying tendon visualized in 3 dimensions by high-voltage electron-microscopic tomography and graphic image reconstruction. J Struct Biol, 1993, 110(1):39
    [31]
    Ji B H, Gao H J. Mechanical principles of biological nanocomposites. Annu Rev Mater Res, 2010, 40:77
    [32]
    Traub W, Arad T, Weiner S. Three-dimensional ordered distribution of crystals in turkey tendon collagen fibers. Proc Natl Acad Sci USA, 1989, 86(24):9822
    [33]
    Zylberberg L, Nicolas G. Ultrastructure of scales in a teleost (Carassius auraturs L) after use of rapid freeze-fixation and freeze-substitution. Cell Tissue Res, 1982, 223(2):349
    [35]
    Oxlund H, Barckman M, Ortoft G, et al. Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone, 1995, 17(Suppl 4):S365
    [36]
    Naleway S E, Taylor J R A, Porter M M, et al. Structure and mechanical properties of selected protective systems in marine organisms. Mater Sci Eng C Mater Biol Appl, 2016, 59:1143
    [37]
    Dumont M, Borbely A, Kaysser-Pyzalla A, et al. Long bone cortices in a growth series of Apatosaurus sp. (Dinosauria:Diplodocidae):geometry, body mass, and crystallite orientation of giant animals. Biol J Linn Soc, 2014, 112(4):782
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (641) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频