<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 10
Oct.  2017
Turn off MathJax
Article Contents
XU Gang, ZHANG Xiao-tong, LI Min, XU Jin-wu. An outlier detection algorithm based on a soft hyper-sphere for high dimension nonlinear data[J]. Chinese Journal of Engineering, 2017, 39(10): 1552-1558. doi: 10.13374/j.issn2095-9389.2017.10.014
Citation: XU Gang, ZHANG Xiao-tong, LI Min, XU Jin-wu. An outlier detection algorithm based on a soft hyper-sphere for high dimension nonlinear data[J]. Chinese Journal of Engineering, 2017, 39(10): 1552-1558. doi: 10.13374/j.issn2095-9389.2017.10.014

An outlier detection algorithm based on a soft hyper-sphere for high dimension nonlinear data

doi: 10.13374/j.issn2095-9389.2017.10.014
  • Received Date: 2016-07-07
  • In process industries, such as metallurgy and chemistry, real procedure parameters usually possess high-dimensional nonlinear features. To solve the problem of outlier detection in complex high-dimensional data, the concept of a soft hyper-sphere is introduced in this paper. An original data set is projected into a high-dimensional feature space using a nonlinear kernel function, and the boundary of the soft hyper-sphere is determined within this feature space. To avoid a mass product quality incident, location information on the testing samples, which are projected into the feature space, is used to decide whether they are outliers. As an applied example, practical procedure data obtained from a type of auto steel product were tested. The results verify that the proposed outlier detection algorithm based on a soft hyper-sphere has a better ability for outlier detection in high-dimensional nonlinear data than tradional methods.

     

  • loading
  • [1]
    Zimek A, Schubert E, Kriegel H P. A survey on unsupervised outlier detection in high-dimensional numerical data. Statist Anal Data Min ASA Data Sci, 2012, 5(5):363
    [2]
    Guo J H, Huang W, Williams B M. Real time traffic flow outlier detection using short-term traffic conditional variance prediction. Transport Res C Emerg Technol, 2015, 50:160
    [6]
    Johnson J E. A User's Guide to Principal Components. New York:John Wiley&Sons Inc, 1991
    [7]
    Wold S, Martens H, Wold H. The multivariate calibration problem in chemistry solved by the PLS method. Matrix Pencils, 1983, 973:286
    [8]
    Tax D M J. One-Class Classification[Dissertation]. Dutch:Delft University of Technology, 2001
    [9]
    Liu B, Xiao Y, Cao L, et al. SVDD-based outlier detection on uncertain data. Knowl Inform Syst, 2013, 34(3):597
    [10]
    Sakla W, Chan A, Ji J, et al. An SVDD-based algorithm for target detection in hyperspectral imagery. IEEE Geosci Remote Sens Lett, 2011, 8(2):384
    [11]
    Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Analysis. England:Cambridge University Press, 2004
    [12]
    Rosipal R, Trejo L J. Kernel partial least squares regression in reproducing Kernel Hillbert space. J Mach Learn Res, 2001, 2:97
    [13]
    Bach F R, Jordan M I. Kernel independent component analysis. J Mach Learn Res, 2002, 3:1
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (709) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频