<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 9
Sep.  2017
Turn off MathJax
Article Contents
LU Jian-hong, JIAO Han-dong, JIAO Shu-qiang. Effect of sodium 3,3'-dithiodipropane sulfonate in a dual-ligand electroless copper system[J]. Chinese Journal of Engineering, 2017, 39(9): 1380-1385. doi: 10.13374/j.issn2095-9389.2017.09.011
Citation: LU Jian-hong, JIAO Han-dong, JIAO Shu-qiang. Effect of sodium 3,3'-dithiodipropane sulfonate in a dual-ligand electroless copper system[J]. Chinese Journal of Engineering, 2017, 39(9): 1380-1385. doi: 10.13374/j.issn2095-9389.2017.09.011

Effect of sodium 3,3'-dithiodipropane sulfonate in a dual-ligand electroless copper system

doi: 10.13374/j.issn2095-9389.2017.09.011
  • Received Date: 2016-12-01
  • The process of electroless copper plating in an EDTA/THPED dual-ligand system using sodium 3,3'-dithiodipropane sulfonate (SPS) as an additive was studied by the electrochemical method. The mixed potential of the system was measured as a function of time, and results indicate that addition of SPS gradually shifts the mixed potential toward the negative direction without saltation. The dual-ligand electroless copper system was then tested by linear sweep voltammetry, and SPS is found to accelerate both cathodic and anodic polarization. The additive mainly influences the anodic polarization of the formaldehyde oxidation process and the rate of copper deposition is improved to a certain extent. The surface morphology and texture of the resulting plated copper were also analyzed by scanning electron microscope, energy dispersive spectrometer and X-ray diffraction, and a high-purity product without Cu2O inclusions is confirmed. Moreover, the X-ray diffraction results of the electroless copper layers show that addition of SPS favors the formation of the preferred orientation on the (200) lattice plane.

     

  • loading
  • [1]
    Narcus H. Practical copper reduction on nonconductor. Metal Finish, 1947, 45(2):964
    [2]
    Cahill A E. Surface catalyzed reduction of copper. Am Electrochem Soc Proc, 1957, 44:130
    [7]
    Shingubara S, Wang Z L, Yaegashi O, et al. Bottom-up fill of copper in deep submicrometer holes by electroless plating. Electrochem Solid-State Lett, 2004, 7(6):C78
    [8]
    Miura S, Honma H. Advancecd copper electroplating for application of electronics. Surf Coat Technol, 2003, 169-170:91
    [9]
    Kobayashi T, Kawasaki J, Mihara K, et al. Via-filling using electroplating for build-up PCBs. Electrochim Acta, 2001, 47(1-2):85
    [11]
    Norkus E, Vaškelis A, Jačiauskienė J, et al. Environmentally friendly natural polyhydroxylic compounds in electroless copper plating baths:application of xylitol, D-mannitol and D-sorbitol as copper (Ⅱ) ligands. J Appl Electrochem, 2005, 35(1):41
    [12]
    Mishra K G, Paramguru R K. Kinetics and mechanism of electroless copper deposition at moderate-to-high copper ion and lowto-moderate formaldehyde concentrations. Metall Mater Trans B, 1999, 30(2):223
    [13]
    Lee C H, Lee S C, Kim J J. Bottom-up filling in Cu electroless deposition using bis-(3-sulfopropy1)-disulfide (SPS). Electrochim Acta, 2005, 50(16-17):3563
    [14]
    Paunovic M. Ligand effects in electroless copper deposition. J Electrochem Soc, 1977, 124(3):349
    [15]
    Norkus E, Kepenienė V, Vaškelis A, et al. Application of environmentally friendly ligands for alkaline electroless copper plating systems:electroless copper deposition using trisodium salt of 2-hydroxy-1, 2, 3-propanetricarboxylic acid as Cu (Ⅱ) ligand. Chemija, 2006, 17(4):20
    [16]
    Ramasubramanian M, Popov B N, White R E, et al. A mathematical model for electroless copper deposition on planar substrates. J Electrochem Soc, 1999, 146(1):111
    [17]
    Pauliukaité R, Stalnionis G, Jusys Z, et al. Effect of Cu (Ⅱ) ligands on electroless copper deposition rate in formaldehyde solutions:An EQCM study. J Appl Electrochem, 2006, 36(11):1261
    [18]
    Jusys Z, Pauliukaite R, Vaškelis A. EQCM study of the effect of ligands on the rate of CuⅡ reduction by formaldehyde. Phys Chem Chem Phys, 1999, 1:313
    [19]
    Vaškelis A, Jačiauskienė J, Stalnionienė I, et al. Accelerating effect of ammonia on electroless copper deposition in alkaline formaldehyde-containing solutions. J Electroanal Chem, 2007, 600(1):6
    [20]
    Jusys Z, Stalnionis G, Juzeliūnas E, et al. The kinetic HD isotope effect in electroless copper plating. An EQCM study. Electrochim Acta, 1998, 43(3-4):301
    [21]
    Mishra K G, Paramguru R K. Surface modification with copper by electroless deposition technique:an overview. Afr J Pure Appl Chem, 2010, 4(6):87
    [22]
    Hu F T, Yang S, Wang H Z, et al. Electroless silver coating on copper microcones for low-temperature solid-state bonding. J Electron Mater, 2015, 44(11):4516
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (1106) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频