Citation: | LI Shuai, FAN Xiao-guang, XU Yue-lei, LI Wen-qian, HUANG Jin-ke. Bio-inspired motion-adaptive estimation algorithm of sequence image[J]. Chinese Journal of Engineering, 2017, 39(8): 1238-1243. doi: 10.13374/j.issn2095-9389.2017.08.014 |
[1] |
Fortun D, Bouthemy P, Kervrann C. Optical flow modeling and computation:a survey. Comput Vision Image Understanding, 2015, 134:1
|
[2] |
Horn B K P, Schunck B G. Determining optical flow. Artif Intelligence, 1981, 17(1-3):185
|
[3] |
Butler D J, Wulff J, Stanley G B, et al. A naturalistic open source movie for optical flow evaluation//12th European Conference on Computer Vision. Firenze, 2012:611
|
[4] |
Revaud J, Weinzaepfel P, Harchaoui Z, et al. Epicflow:edge-preserving interpolation of correspondences for optical flow//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, 2015:1164
|
[6] |
Heeger D J. Optical flow using spatiotemporal filters. Int J Comput Vision, 1988, 1(4):279
|
[7] |
Rust N C, Mante V, Simoncelli E P, et al. How MT cells analyze the motion of visual patterns. Nat Neurosci, 2006, 9(11):1421
|
[8] |
Nishimoto S, Gallant J L. A three-dimensional spatiotemporal receptive field model explains responses of area MT neurons to naturalistic movies. J Neurosci, 2011, 31(41):14551
|
[9] |
Solari F, Chessa M, Medathati N V K, et al. What can we expect from a V1-MT feedforward architecture for optical flow estimation?. Signal Processing:Image Commun, 2015, 39:342
|
[10] |
Wedel A, Pock T, Zach C, et al. An improved algorithm for TV-L1 optical flow//Statistical and Geometrical Approaches to Visual Motion Analysis. Berlin, 2009:23
|
[12] |
Baker S, Scharstein D, Lewis J P, et al. A database and evaluation methodology for optical flow. Int J Comput Vision, 2011, 92(1):1
|