<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 8
Aug.  2017
Turn off MathJax
Article Contents
LIU Jian-guo, JIN Long-zhe, GAO Na, WANG Shu, ZHANG Hao. Catalytic effect of Mn particle size on thermal decomposition of sodium chlorate in oxygen generators[J]. Chinese Journal of Engineering, 2017, 39(8): 1159-1165. doi: 10.13374/j.issn2095-9389.2017.08.004
Citation: LIU Jian-guo, JIN Long-zhe, GAO Na, WANG Shu, ZHANG Hao. Catalytic effect of Mn particle size on thermal decomposition of sodium chlorate in oxygen generators[J]. Chinese Journal of Engineering, 2017, 39(8): 1159-1165. doi: 10.13374/j.issn2095-9389.2017.08.004

Catalytic effect of Mn particle size on thermal decomposition of sodium chlorate in oxygen generators

doi: 10.13374/j.issn2095-9389.2017.08.004
  • Received Date: 2017-03-09
  • Two groups of Mn metal fuels with different particle-size distributions were prepared with median diameters of 18.73 and 5.24 μm. The particle-size distribution was measured by a laser particle-size analyzer, the surface morphology was analyzed via scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS) determined the contained elements. For the NaClO3, the NaClO3 and Co3O4 as well as NaClO3, Co3O4, and Mn mixtures were subjected to TGA-DSC combined thermogravimetric analysis. The effects of the Mn metal fuel particle size on the catalytic effect and pyrolysis stability of NaClO3 were investigated by comparing the pyrolysis onset/final temperature and other characteristics. The results show that although Co3O4 has a significant catalytic effect on the pyrolysis of NaClO3, e.g., the onset pyrolysis temperature decreases from 512.3 to 333.0℃, it can lead to instability in NaClO3 pyrolysis, namely the pyrolysis steps from 1 to 3. The Mn metal fuel has a clear catalysis effect on the intermediate products of NaClO3 pyrolysis. With the decrease in particle size, the catalytic effect gradually increases and the pyrolysis final temperature Tf decreases from 419.8 to 351.9℃. Meanwhile, the pyrolysis step of NaClO3 decreases and the temperature range of pyrolysis decreases from 180.6 to 19.4℃, indicating that the pyrolysis process becomes more stable.

     

  • loading
  • [1]
    Jin L Z, Wang S, Liu S C, et al. Development of a low oxygen generation rate chemical oxygen generator for emergency refuge spaces in underground mines. Combust Sci Technol, 2015, 187(8):1229
    [2]
    Shafirovich E, Garcia A, Swamy A K N, et al. On feasibility of decreasing metal fuel content in chemical oxygen generators. Combust Flame, 2012, 159(1):420
    [4]
    Graf J, Dunlap C, Haas J, et al. Development of a solid chlorate backup oxygen delivery system for the international space station//International Conference on Envrionmental Systems (ICES). Toulouse, 2000
    [6]
    Littman J, Prince R N. Research on sodium chlorate candles for the storage and supply of oxygen for space exploration. NASA Special Publ, 1970, 234:291
    [9]
    Liu J G, Jin L Z, Gao N, et al. Effect of forming technology on oxygen supply performance of oxygen candles in refuge spaces//3rd International Symposium on Mine Safety Science and Engineering. Montreal, 2016:308
    [10]
    Wydeven T. Catalytic decomposition of sodium chlorate. J Catal, 1970, 19(2):162
    [12]
    Shafirovich E, Mukasyan A S, Varma A, et al. Mechanism of combustion in low-exothermic mixtures of sodium chlorate and metal fuel. Combust Flame, 2002, 128(1-2):133
    [13]
    Shafirovich E, Zhou C, Mukasyan A S, et al. Combustion fluctuations in low-exothermic condensed systems for emergency oxygen generation. Combust Flame, 2003, 135(4):557
    [14]
    Shafirovich E, Zhou C J, Ekambaram S, et al. Catalytic effects of metals on thermal decomposition of sodium chlorate for emergency oxygen generators. Ind Eng Chem Res, 2007, 46(10):3073
    [15]
    Machado M A, Rodriguez D A, Aly Y, et al. Nanocomposite and mechanically alloyed reactive materials as energetic additives in chemical oxygen generators. Combust Flame, 2014, 161(10):2708
    [16]
    Zhang Y C, Kshirsagar G, Ellison J E, et al. Catalytic effects of non-oxide metal compounds on the thermal decomposition of sodium chlorate. Ind Eng Chem Res, 1993, 32(11):2863
    [17]
    Zhang Y C, Kshirsagar G, Ellison J E, et al. Catalytic effects of metal oxides on the thermal decomposition of sodium chlorate. Thermochimical Acta, 1993, 228:147
    [18]
    Phuoc T X, Chen R H. Modeling the effect of particle size on the activation energy and ignition temperature of metallic nanoparticles. Combust Flame, 2012, 159(1):416
    [19]
    Mohan S, Trunov M A, Dreizin E L. On possibility of vapor-phase combustion for fine aluminum particles. Combust Flame, 2009, 156(11):2213
    [20]
    Huang Y, Risha G A, Yang V, et al. Effect of particle size on combustion of aluminum particle dust in air. Combust Flame, 2009, 156(1):5
    [21]
    British Standards Institution. ISO 11358-1-2014 Plastics-Thermogravimetry (TG) of polymers-Part 1:General principles. Geneva, International Organization for Standardization, 2014
    [22]
    Markowitz M M, Boryta D A, Stewart Jr H. The differential thermal analysis of perchlorates. VI. Transient perchlorate formation during the pyrolysis of the alkali metal chlorates. J Phys Chem, 1964, 68(8):2282
    [23]
    Hu M, Chen Z H, Guo D B, et al. Thermogravimetric study on pyrolysis kinetics of Chlorella pyrenoidosa and bloom-forming cyanobacteria. Bioresour Technol, 2015, 177:41
    [24]
    Ceylan S, Kazan D. Pyrolysis kinetics and thermal characteristics of microalgae Nannochloropsis oculata and Tetraselmis sp. Bioresour Technol, 2015, 187:1
    [25]
    Boon T H, Raheem A, Ghani W A W A K, et al. Thermogravimetric study of napier grass in inert and oxidative atmospheres conditions. J Phys Sci, 2017, 28(Suppl 1):155
    [26]
    Rudloff W K, Freeman E S. Catalytic effect of metal oxides on thermal-decomposition reactions. I. The mechanism of the molten-phase thermal decomposition of potassium chlorate and of potassium chlorate in mixtures with potassium chloride and potassium perchlorate. J Phys Chem, 1969, 73(5):1209
    [27]
    Zhang Y W, Yan K, Qiu K Z, et al. Catalyst for lithium perchlorate decomposition. J Propul Power, 2015, 31(5):1445
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (1011) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频