<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 7
Jul.  2017
Turn off MathJax
Article Contents
LIU Hong-bo, LIU Jian-hua, SHEN Shao-bo, WU Bo-wei, DING Hao, SU Xiao-feng. Influence of Al content on the characteristics of non-metallic inclusions and precipitation behaviors of AlN inclusions in TWIP steel[J]. Chinese Journal of Engineering, 2017, 39(7): 1008-1019. doi: 10.13374/j.issn2095-9389.2017.07.005
Citation: LIU Hong-bo, LIU Jian-hua, SHEN Shao-bo, WU Bo-wei, DING Hao, SU Xiao-feng. Influence of Al content on the characteristics of non-metallic inclusions and precipitation behaviors of AlN inclusions in TWIP steel[J]. Chinese Journal of Engineering, 2017, 39(7): 1008-1019. doi: 10.13374/j.issn2095-9389.2017.07.005

Influence of Al content on the characteristics of non-metallic inclusions and precipitation behaviors of AlN inclusions in TWIP steel

doi: 10.13374/j.issn2095-9389.2017.07.005
  • Received Date: 2016-07-27
  • The morphology, composition, and number of inclusions in Fe-Mn-C(-Al) twining-induced plasticity (TWIP) steels were investigated by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and an automated program called "INCAFeature". The characteristics of the inclusions in four TWIP steels with different Al contents (0.002% -1.590%) as well as the influence of Al content on the precipitation of AlN inclusions were investigated. In addition, systematic thermodynamics calculations of AlN formed in TWIP steel were carried out using the appropriate thermodynamic data for high-Mn-Al TWIP steel. The results show that AlN would begin to precipitate and locally precipitate around the MnS(Se) -Al2O3 inclusions when the Al content in the steel reaches 0.75%. The thermodynamics calculations show that AlN could already form in the liquid TWIP steel at an Al content of 1.07%. Then, AlN would locally precipitate around the MnS(Se) inclusions, thus forming MnS(Se) -AlN aggregates. When the Al content increases to 1.59%, the precipitation temperature of AlN is 42℃ higher than the liquidus temperature of the TWIP steel. Furthermore, precipitated AlN inclusions in the liquid TWIP steel could act as heterogeneous nuclei for MnS(Se) inclusions, thus forming MnS(Se) -AlN inclusions. Moreover, according to the thermodynamics calculation, the lowest N content for AlN formation in the liquid Fe-18.21% Mn-0.64% C-1.59% Al steel is just 0.0043%. Therefore, the N content should be kept as low as possible to avoid the formation of excessive AlN inclusions during melting of Fe-Mn-C(-Al) TWIP steel.

     

  • loading
  • [1]
    Grässel O, Kruger L, Frommeyer G, et al. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application. Int J Plast, 2000, 16(10-11):1391
    [2]
    Hwang S W, Ji J H, Lee E G, et al. Tensile deformation of a duplex Fe-20Mn-9Al-0.6 C steel having the reduced specific weight. Mater Sci Eng A, 2011, 528(15):5196
    [3]
    Li D Z, Wei Y H, Xu B S, et al. Development in fundamental research in TWIP steel used in automobile industry. Ironmaking Steelmaking, 2011, 38(7):540
    [4]
    Li P, Li J, Meng Q, et al. Effect of heating rate on nucleation and growth of austenite in cold rolled dual phase steel. Ironmaking Steelmaking, 2015, 42(2):81
    [5]
    Liu H B, Liu J H, Michelic S, et al. Characteristics of AlN inclusions in low carbon Fe-Mn-Si-Al TWIP steel produced by AOD-ESR method. Ironmaking Steelmaking, 2016, 43(3):171
    [6]
    Idrissi H, Renard K, Ryelandt L, et al. On the mechanism of twin formation in Fe-Mn-C TWIP steels. Acta Mater, 2010, 58(7):2464
    [8]
    Gigacher G, Krieger W, Scheller P R, et al. Non-metallic inclusions in high-manganese-alloy steels. Steel Res Int, 2005, 76(9):644
    [9]
    Park J H, Kim D J, Min D J. Characterization of non-metallic inclusions in high-manganese and aluminum-alloyed austenitic steels. Metall Mater Trans A, 2012, 43(7):2316
    [10]
    Xin X L, Yang J, Wang Y N, et al. Effects of Al content on non-metallic inclusion evolution in Fe-16Mn-xAl-0.6C high Mn TWIP steel. Ironmaking Steelmaking, 2016, 43(3):234
    [11]
    Paek M K, Jang J M, Jiang M, et al. Thermodynamics of AlN formation in high manganese-aluminum alloyed liquid steels. ISIJ Int, 2013, 53(6):973
    [12]
    Paek M K, Jang J M, Kang H J, et al. Reassessment of AlN(s)=Al + N equilibration in liquid iron. ISIJ Int, 2013, 53(3):535
    [13]
    Yin H B. Inclusion characterization and thermodynamics for high Al advanced high-strength steels. Iron Steel Technol, 2006, 3(6):64
    [14]
    Kaushik P, Lowry M, Yin H, et al. Inclusion characterization for clean steelmaking and quality control. Ironmaking Steelmaking, 2012, 39(4):284
    [15]
    Liu H B, Liu J H, Michelic S, et al. Characterization and analysis of non-metallic inclusions in low carbon Fe-Mn-Si-Al TWIP steels. Steel Res Int, 2016, 87(12):1723
    [16]
    Vedani M, Dellasega D, Mannuccii A. Characterization of grainboundary precipitates after hot-ductility tests of microalloyed steels. ISIJ Int, 2009, 49(3):446
    [17]
    Kang S E, Banerjee J R, Mintz B. Influence of S and AlN on hot ductility of high Al, TWIP steels. Mater Sci Tech, 2012, 28(5):589
    [18]
    Kang S E, Tuling A, Banerjee J R, et al. Hot ductility of TWIP steels. Mater Sci Technol, 2011, 27(1):95
    [19]
    Lewis I E, Scaife P H, Swinkels D A J. Electrolytic manganese metal from chloride electrolytes. Ⅱ. Effect of additives. J Appl Electrochem, 1976, 6(5):453
    [20]
    Sun Y, Tian X K, He B B, et al. Studies of the reduction mechanism of selenium dioxide and its impact on the microstructure of manganese electrodeposit. Electrochim Acta, 2011, 56(24):8305
    [21]
    Satoh N, Taniguchi T, Mishima S, et al. Prediction of nonmetallic inclusion formation in Fe-40mass% Ni-5mass% Cr alloy production process. Testu-to-Hagané, 2009, 95(12):827
    [22]
    Wada H, Pehlke R D. Nitrogen solubility and aluminum nitride precipitation in liquid iron, Fe-Cr, Fe-Cr-Ni, and Fe-Cr-Ni-Mo alloys. Metall Trans B, 1978, 9(3):441
    [23]
    Kim W Y, Kang J G, Park C H. Thermodynamics of aluminum, nitrogen and AlN formation in liquid iron. ISIJ Int, 2007, 47(7):945
    [25]
    The Japan Society for the Promotion of Science. Steelmaking Data Sourcebook. New York:Gordon and Breach Science Publications, 1988
    [26]
    Paek M K, Jang J M, Do K H, et al. Nitrogen solubility in high manganese-aluminum alloyed liquid steels. Met Mater Int, 2013, 19(5):1077
    [27]
    Kim D H, Jung M S, Nam H, et al. Thermodynamic relation between silicon and aluminum in liquid iron. Metall Mater Trans B, 2012, 43(5):1106
    [28]
    Shin J H, Lee J, Min D J, et al. Solubility of nitrogen in high manganese steel (HMnS) melts:interaction parameter between Mn and N. Metall Mater Trans B, 2011, 42(6):1081
    [29]
    Jang J M, Seo S H, Kim Y D, et al. Effect of carbon on nitrogen solubility and AlN formation in high Al alloyed liquid steels. ISIJ Int, 2014, 54(7):1578
    [30]
    Jang J M, Seo S H, Jiang M, et al. Nitrogen solubility in liquid Fe-C alloys. ISIJ Int, 2014, 54(1):32
    [31]
    Croft N H, Entwisle A R, Davies G J. Origins of dendritic AlN precipitates in aluminum-killed-steel castings. Met Technol, 1983, 10(1):125
    [32]
    Shi C B, Chen X C, Guo H J. Characteristics of inclusions in high-Al steel during electroslag remelting process. Int J Miner Metall Mater, 2012, 19(4):295
    [33]
    Turkdogan E T. Fundamental of Steelmaking. Cambridge:The University Press, 1996
    [34]
    Goto H, Miyazawa K, Yamada W, et al. Effect of cooling rate on composition of oxides precipitated during solidification of steel. ISIJ Int, 1995, 35(6):708
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (1010) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频