<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 6
Jun.  2017
Turn off MathJax
Article Contents
DAI Li-quan, HE Guo-qiu, YE Yun, Lü Shi-quan, LIU Xiao-shan, WANG Qi-gui. Effects of cooling velocity on multiaxial fatigue behavior of A319 alloy under circular loading conditions[J]. Chinese Journal of Engineering, 2017, 39(6): 875-881. doi: 10.13374/j.issn2095-9389.2017.06.009
Citation: DAI Li-quan, HE Guo-qiu, YE Yun, Lü Shi-quan, LIU Xiao-shan, WANG Qi-gui. Effects of cooling velocity on multiaxial fatigue behavior of A319 alloy under circular loading conditions[J]. Chinese Journal of Engineering, 2017, 39(6): 875-881. doi: 10.13374/j.issn2095-9389.2017.06.009

Effects of cooling velocity on multiaxial fatigue behavior of A319 alloy under circular loading conditions

doi: 10.13374/j.issn2095-9389.2017.06.009
  • Received Date: 2016-08-24
  • The effects of cooling velocity on the multiaxial fatigue properties of A319 alloy under circular loading conditions was studied by using the MTS809 servo-hydraulic testing system and scanning electron microscopy. The results indicate that the solidification cooling velocity of 10℃·s-1 leads to decrease in the size of microstructures, such as second dendrite arming space, Si particle, and void compared. Hysteresis loops with smaller second dendrite arming space show that there is almost no phase angle between strain and stress along the axial direction. Furthermore, the decrease in second dendrite arming space size manifests as a more remarkable additional hardening effect compared to that of the sample with a cooling velocity of 0.1℃·s-1. The local regions of crack initiation are completely different. The cracks in samples solidified at a cooling velocity of 10℃·s-1 initiate and propagate from large Si particulars, in contrast to the cracks in samples solidified at a cooling velocity of 0.1℃·s-1, which initiate from pores. It is also found the A319 samples under the two different cooling velocities show initial cyclic hardening followed by cyclic softening in the axial direction and initial cyclic hardening followed by stable tendency in the shear direction.

     

  • loading
  • [1]
    Mo D F, He G Q, Hu Z F, et al. Effect of microstructural features on fatigue behavior in A319-T6 aluminum alloy. Mat Sci Eng A, 2010, 527(15):3420
    [3]
    Suresh S. Fatigue of Materials. London:Cambridge University Press, 1998
    [5]
    McDowell D L. Multiaxial small fatigue crack growth in metals. Int J Fatigue, 1997, 19(93):127
    [6]
    Ha T K, Park W J, Ahn S, et al. Fabrication of spray-formed hypereutectic Al-25Si alloy and its deformation behavior. J Mater Processing Tech, 2002, 130:691
    [7]
    Yeh J W, Yuan S Y, Peng C H. A reciprocating extrusion process for producing hypereutectic Al-20wt.% Si wrought alloys. Mat Sci Eng A, 1998, 252(2):212
    [12]
    Wang Q G. Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357. Metall Mater Trans A, 2003, 34(12):2887
    [13]
    Zhang B, Chen W, Poirier D R. Effect of solidification cooling rate on the fatigue life of A356.2-T6 cast aluminium alloy. Fatigue Fract Eng M, 2000, 23(5):417
    [14]
    Hosseini V A, Shabestari S G, Gholizadeh R. Study on the effect of cooling rate on the solidification parameters, microstructure, and mechanical properties of LM13 alloy using cooling curve thermal analysis technique. Mater Des, 2013, 50:7
    [15]
    Dobrzanski L A, Maniara R, Sokolowski J H. The effect of cooling rate on microstructure and mechanical properties of AC AlSi9Cu alloy. Arch Mater Sci, 2007, 28(2):105
    [16]
    Morrow J D. Cyclic plastic strain energy and fatigue of metals. Asme Stp, 1965, 378:45
    [17]
    Srivatsan T S, Al-Hajri M, Hannon W, et al. The strain amplitude-controlled cyclic fatigue, defomation and fracture behavior of 7034 aluminum alloy reinforced with silicon carbide particulates. Mat Sci Eng A, 2004, 379(1):181
    [18]
    Li W, Chen Z H, Chen D, et al. Low-cycle fatigue behavior of SiCp/Al-Si composites produced by spray deposition. Mat Sci Eng A, 2010, 527(29):7631
    [19]
    Liu J X, Zhang Q, Zuo Z X, et al. Microstructure evolution of Al-12Si-CuNiMg alloy under high temperature low cycle fatigue. Mat Sci Eng A, 2013, 574:186
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (609) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频