Citation: | LI Nong, KONG Ning, LI Hong-bo, ZHANG Jie, JIA Sheng-hui, CHU Yu-gang, LIU Hai-jun. Analysis of fluid-structure interaction vibration based on the detection principle of SI-FLAT flatness measurement systems[J]. Chinese Journal of Engineering, 2017, 39(4): 593-603. doi: 10.13374/j.issn2095-9389.2017.04.015 |
[2] |
Spreitzhofer G, Duemmler A, Riess M, et al. SI-FLAT contactless flatness measurement for cold rolling mills and processing lines. Rev Met Paris, 2005, 102(9):589
|
[9] |
In K M, Choi D H, Kim M U. Two-dimensional viscous flow past a flat plate. Fluid Dyn Res, 1995, 15(1):13.
|
[13] |
Vaziri A, Hutchinson J W. Metal sandwich plates subject to intense air shocks. Int J Solids Struct, 2007, 44(6):2021
|
[15] |
Dudarev V V, Mnukhin R M, Vatulyan A O. Vibration of a prestressed tube in the presence of plastic zone. J Sound Vib, 2016, 375:92
|
[16] |
Gorb Y, Walton J R. Dependence of the frequency spectrum of small amplitude vibrations superimposed on finite deformations of a nonlinear, cylindrical elastic body on residual stress. Int J Eng Sci, 2010, 48(11):1289
|
[17] |
Jiang H, Wang C Y, Luo Y. Vibration of piezoelectric nanobeams with an internal residual stress and a nonlinear strain. Phys Lett A, 2015, 379(40):2631
|
[18] |
Lewicka M, Mahadevan L, Pakzad M R. The Föppl-von Kármán equations for plates with incompatible strains. Proc R Soc London A, 2011, 467(2126):402
|