<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 4
Apr.  2017
Turn off MathJax
Article Contents
XU Qian, FENG Jun-xiao. Simulation and structural optimization of flat double-P type radiant tubes based on the orthogonal method[J]. Chinese Journal of Engineering, 2017, 39(4): 581-592. doi: 10.13374/j.issn2095-9389.2017.04.014
Citation: XU Qian, FENG Jun-xiao. Simulation and structural optimization of flat double-P type radiant tubes based on the orthogonal method[J]. Chinese Journal of Engineering, 2017, 39(4): 581-592. doi: 10.13374/j.issn2095-9389.2017.04.014

Simulation and structural optimization of flat double-P type radiant tubes based on the orthogonal method

doi: 10.13374/j.issn2095-9389.2017.04.014
  • Received Date: 2016-05-04
  • The effects of structural dimensions such as central tube equivalent radius, branch tube equivalent radius, tube spacing, and tube length on the performance of a flat double-P type radiant tube were studied in this paper. The structural dimensions of the radiant tube and the positions of the burner nozzles were optimized using an orthogonal experimental program. It is shown that obvious influencing factors on the surface temperature difference of the radiant tube are tube spacing, central tube equivalent radius, tube length, and branch tube equivalent radius in turn. However, significant influencing factors on the radiant power of the radiant tube are tube length, central tube equivalent radius, tube spacing, and branch tube equivalent radius in order. When the size ratio of the upper to lower air nozzle is 7:3 and the size ratio of the left to right air nozzle is 9:1, the performance parameters of the radiation tube are the best. When the distance between the air and fuel gas nozzle is 50 mm and the air nozzle distance is 60 mm, the uneven coefficient of the radiation tube's surface temperature is the smallest at 0.058.

     

  • loading
  • [1]
    Ahanj M D, Rahimi M, Alsairafi A A. CFD modeling of a radiant tube heater. Int Commun Heat Mass Transfer, 2012, 39(3):432
    [2]
    Chae Y T, Strand R K. Thermal performance evaluation of hybrid heat source radiant system using a concentrate tube heat exchanger. Energy Build, 2014, 70:246
    [5]
    Johnston J D, Thornton E A. Thermal response of radiantly heated spinning spacecraft booms. J Thermophys Heat Transfer, 2015, 10(1):60
    [6]
    Tsioumanis N, Brammer J G, Hubert J. Flow processes in a radiant tube burner Combusting flow. Energy Convers Manage, 2011, 52(7):2667
    [7]
    Shen J, Liu J X, Zhang H, et al. NOx emission characteristics of superfine pulverized anthracite coal in air-staged combustion. Energy Convers Manage, 2013, 74:454
    [8]
    Jegla Z, Hájek J, Vondál J. Numerical analysis of heat transfer in radiant section of fired heater with realistic imperfect geometry of tube coil. Chem Eng Trans, 2014, 39:889
    [9]
    Li M J, Zhou W J, Zhang J F, et al. Heat transfer and pressure performance of a plain fin with radiantly arranged winglets around each tube in fin-and-tube heat transfer surface. Int J Heat Mass Transfer, 2014, 70:734
    [10]
    Saravanan P, Sahoo G, Srikanth S, et al. Failure analysis of radiant tube burners in continuous annealing line (CAL) of an integrated steel plant. J Fail Anal Prev, 2010, 11(3):286
    [12]
    Hájek J, Jegla Z, Vondál J. Numerical analysis of radiant section of fired heater focused on the effect of wall-tube distance. Comput Aided Chem Eng, 2014, 33:331
    [14]
    Irfan M, Chapman W. Thermal stress in radiant tubes:a comparison between recuperative and regenerative systems. Appl Therm Eng, 2010, 30(2):196
    [15]
    Irfan M A, Chapman W. Thermal stresses in radiant tubes due to axial, circumferential and radiant temperature distributions. Appl Therm Eng, 2009, 29(10):1913
    [16]
    Quinn D E. Radiant Tube with Recirculation:USA Patent, US7959431.2011-06-14
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (549) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频