<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 4
Apr.  2017
Turn off MathJax
Article Contents
DENG Hai-long, LI Wei, SUN Zhen-duo, ZHANG Zhen-yu. Aprediction model for the very high cycle fatigue life for inclusion-FGA (fine granular area) -fisheye induced fatigue failure[J]. Chinese Journal of Engineering, 2017, 39(4): 567-573. doi: 10.13374/j.issn2095-9389.2017.04.012
Citation: DENG Hai-long, LI Wei, SUN Zhen-duo, ZHANG Zhen-yu. Aprediction model for the very high cycle fatigue life for inclusion-FGA (fine granular area) -fisheye induced fatigue failure[J]. Chinese Journal of Engineering, 2017, 39(4): 567-573. doi: 10.13374/j.issn2095-9389.2017.04.012

Aprediction model for the very high cycle fatigue life for inclusion-FGA (fine granular area) -fisheye induced fatigue failure

doi: 10.13374/j.issn2095-9389.2017.04.012
  • Received Date: 2016-07-06
  • A prediction model for the very high cycle fatigue life for inclusion-fine granular area (FGA) -fisheye-induced failure was studied in this work. Combined with the experimental results of Cr-Ni-W alloy steel, a local crack initiation life model (LCIL) and an inclusion-FGA based crack initiation life model (IFCIL) were developed on the basis of the local stress-life method and the dislocation-energy method, respectively. Using the Tanaka-Mura model as a reference, the fitting results of LCIL and IFCIL models were analyzed. Based on the respective modeling of the small crack growth within the FGA and the long crack growth outside the FGA within the fisheye, the total life model involving crack initiation and growth was established. As a result, combined with the results of three crack initiation life models, the IFCIL model exhibits the highest prediction precision, and the predicted crack initiation life associated with the FGA size is nearly equivalent to the total life. Conversely, the crack growth life only occupies a fine fraction of the total life. Between the predicted and experimental results, the agreement is fairly good within the factor-of-two boundaries. In short, the established total life model can be effectively used to predict the very high cycle fatigue life for the inclusion-FGA-fisheye induced failure.

     

  • loading
  • [3]
    Sakai T, Sato Y, Oguma N. Characteristic S-N properties of highcarbon-chromium-bearing steel under axial loading in long-life fatigue. Fatigue Fract Eng Mater Struct, 2002, 25(8):765
    [4]
    Murakami Y, Yokoyama N N, Nagata J. Mechanism of fatigue failure in ultralong life regime. Fatigue Fract Eng Mater Struct, 2002, 25(8):735
    [5]
    Shiozawa K, Lu L T, Ishihara S. S-N curve characteristics and subsurface crack initiation behaviour in ultra-long life fatigue of a high carbon-chromium bearing steel. Fatigue Fract Eng Mater Struct, 2001, 24(12):781
    [6]
    Wang Q Y, Bathias C, Kawagoishi N, et al. Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength. Int J Fatigue, 2002, 24(12):1269
    [7]
    Huang Z Y, Wagner D, Bathias C, et al. Subsurface crack initiation and propagation mechanisms in gigacycle fatigue. Acta Mater, 2010, 58(18):6046
    [8]
    Chapetti M D, Tagawa T, Miyata T. Ultra-long cycle fatigue of high-strength carbon steels:Part Ⅱ. Estimation of fatigue limit for failure from internal inclusions. Mater Sci Eng A, 2003, 356(1):236
    [9]
    Murakami Y, Miller K J. What is fatigue damage?a view point from the observation of low cycle fatigue process. Int J Fatigue, 2005, 27(8):991
    [10]
    Sun C Q, Lei Z Q, Xie J J, et al. Effects of inclusion size and stress ratio on fatigue strength for high-strength steels with fisheye mode failure. Int J Fatigue, 2013, 48:19
    [11]
    Stanzl-Tschegg S, Sch nbauer B. Near-threshold fatigue crack propagation and internal cracks in steel. Procedia Eng, 2010, 2(1):1547
    [12]
    Tanaka K, Mura T. A theory of fatigue crack initiation at inclusions. Metall Trans A, 1982, 13(1):117
    [13]
    Tanaka K, Akiniwa Y. Modelling of small fatigue crack growth interacting with grain boundary. Eng Fract Mech, 1986, 24(6):803
    [14]
    Marines-Garcia I, Paris P C, Tada H, et al. Fatigue crack growth from small to long cracks in very-high-cycle fatigue with surface and internal "fish-eye" failures for ferrite-perlitic low carbon steel SAE 8620. Mater Sci Eng A, 2007, 468-470:120
    [15]
    Stepanskiy L G. Cumulative model of very high cycle fatigue. Fatigue Fract Eng Mater Struct, 2012, 35(6):513
    [16]
    Cerullo M. Sub-surface fatigue crack growth at alumina inclusions in AISI 52100 roller bearings. Procedia Eng, 2014, 74:333
    [17]
    Choi Y, Liu C R. Rolling contact fatigue life of finish hard machined surfaces:Part 1. Model development. Wear, 2006, 261:485
    [18]
    Liu C R, Choi Y. Rolling contact fatigue life model incorporating residual stress scatter. Int J Mech Sci, 2008, 50(12):1572
    [19]
    Chan K S. A microstructure-based fatigue-crack-initiation model. Metall Mater Trans A, 2003, 34(1):43
    [20]
    Venkataraman G, Chung Y W, Nakasone Y, et al. Free-energy formulation of fatigue crack initiation along persistent slip bands:calculation of S-N curves and crack depths. Acta Metall Mater, 1990, 38(1):31
    [21]
    Murakami Y, Aoki S. Stress Intensity Factors Handbook. Japan:Pergamon, 1987
    [22]
    Paris P C, Tada H, Donald J K. Service load fatigue damage-a historical perspective. Int J Fatigue, 1999, 21(Suppl 1):S35
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (751) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频