Citation: | WANG Tao, LU Xin, XU Wei, ZHANG Lin, QU Xuan-hui. Friction and wear properties of ultrafine grain Ti-8Mo-3Fe alloys fabricated by MA-SPS[J]. Chinese Journal of Engineering, 2017, 39(3): 426-431. doi: 10.13374/j.issn2095-9389.2017.03.015 |
[1] |
Atapour M, Pilchak A L, Frankel G S, et al. Corrosion behavior of β titanium alloys for biomedical applications. Mater Sci Eng C, 2011, 31(5):885
|
[3] |
Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants:a review. Prog Mater Sci, 2009, 54(3):397
|
[4] |
Bolat G, Mareci D, Chelariu R, et al. Investigation of the electrochemical behaviour of TiMo alloys in simulated physiological solutions. Electrochim Acta, 2013, 113:470
|
[6] |
Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater, 2008, 1(1):30
|
[8] |
Sathish S, Geetha M, Pandey N D, et al. Studies on the corrosion and wear behavior of the laser nitrided biomedical titanium and its alloys. Mater Sci Eng C, 2010, 30(3):376
|
[10] |
Cvijović-Alagć I, Cvijović Z, Mitrović S, et al. Wear and corrosion behaviour of Ti-13Nb-13Zr and Ti-6Al-4V alloys in simulated physiological solution. Corros Sci, 2011, 53(2):796
|
[14] |
Webster T J, Ejiofor J U. Increased osteoblast adhesion on nanophase metals:Ti, Ti6Al4V, and CoCrMo. Biomaterials, 2004, 25(19):4731
|
[15] |
La P Q, Ma J Q, Zhu Y T, et al. Dry-sliding tribological properties of ultrafine-grained Ti prepared by severe plastic deformation. Acta Mater, 2005, 53(19):5167
|
[16] |
Long Y, Guo W J, Li Y. Bimodal-grained Ti fabricated by highenergy ball milling and spark plasma sintering. Trans Nonferrous Met Soc China, 2016, 26(4):1170
|