<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 3
Mar.  2017
Turn off MathJax
Article Contents
MIAO Xiao-fei, LIU Yong-chuan, ZHNAG Xiang-xin, CHEN Su-jing, CHEN Yuan-qiang, ZHANG Yi-ning. Synthesis of MnO/reduced graphene oxide composites as high performance anode materials for Li-ion batteries[J]. Chinese Journal of Engineering, 2017, 39(3): 407-416. doi: 10.13374/j.issn2095-9389.2017.03.013
Citation: MIAO Xiao-fei, LIU Yong-chuan, ZHNAG Xiang-xin, CHEN Su-jing, CHEN Yuan-qiang, ZHANG Yi-ning. Synthesis of MnO/reduced graphene oxide composites as high performance anode materials for Li-ion batteries[J]. Chinese Journal of Engineering, 2017, 39(3): 407-416. doi: 10.13374/j.issn2095-9389.2017.03.013

Synthesis of MnO/reduced graphene oxide composites as high performance anode materials for Li-ion batteries

doi: 10.13374/j.issn2095-9389.2017.03.013
  • Received Date: 2016-05-17
  • MnO/reduced graphene oxide (MnO/rGO) composites synthesized through freeze-drying following annealing were used as anode materials for lithium ion batteries. At 500 mA·g-1, the MnO/rGO composite exhibits a reversible capacity as high as 830 mAh·g-1 and the specific capacitance remains at 805 mAh·g-1 after 160 discharge/charge cycles, demonstrating excellent cycling stability. It also shows good rate capacities and delivers a specific capacity of 412 mAh·g-1 at 2. 0 A·g-1 after 225 cycles at different rates. The rGO increases the electrical conductivity and provides space to accommodate the volume expansion of MnO during charge/discharge. The extra capacity, over the theoretical value of MnO, is attributed to the formation of higher oxidation state manganese according to the charge-voltage derivative analysis of the galvanostatic charge-discharge curves. A higher tendency to further oxidize Mn(Ⅱ) in the MnO/rGO composite maybe result in the extra oxygen source provided by rGO during the electrode reaction. The simple and green synthetic protocol and the excellent electrochemical performance demonstrate the great potential of the MnO/rGO composite anode in large scale production and applications.

     

  • loading
  • [1]
    Evarts E C. Lithium batteries:To the limits of lithium. Nature, 2015, 526(7575):S93
    [2]
    Reddy M V, Subba Rao G V, Chowdari B V R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev, 2013, 113(7):5364
    [3]
    Li H, Balaya P, Maier J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J Electrochem Soc, 2004, 151(11):A1878
    [4]
    Yu X Q, He Y, Sun J P, et al. Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential. Electrochem Commun, 2009, 11(4):791
    [5]
    Poizot P, Laruelle S, Grugeon S, et al. Rationalization of the lowpotential reactivity of 3d-metal-based inorganic compounds toward Li. J Electrochem Soc, 2002, 149(9):A1212
    [6]
    Zhong K F, Xia X, Zhang B, et al. MnO powder as anode active materials for lithium ion batteries. J Power Sources, 2010, 195(10):3300
    [7]
    Fang X P, Lu X, Guo X W, et al. Electrode reactions of manganese oxides for secondary lithium batteries. Electrochem Commun, 2010, 12(11):1520
    [8]
    Zang J, Qian H, Wei Z K, et al. Reduced graphene oxide supported MnO nanoparticles with excellent lithium storage performance. Electrochim Acta, 2014, 118:112
    [9]
    Wang T Y, Peng Z, Wang Y H, et al. MnO nanoparticle@mesoporous carbon composites grown on conducting substrates featuring high-performance lithium-ion battery, supercapacitor and sensor. Sci Rep, 2013, 3:2693
    [10]
    Sun X F, Xu Y L, Ding P, et al. The composite rods of MnO and multi-walled carbon nanotubes as anode materials for lithium ion batteries. J Power Sources, 2013, 244:690
    [11]
    Qiu D F, Ma L Y, Zheng M B, et al. MnO nanoparticles anchored on graphene nanosheets via in situ carbothermal reduction as high-performance anode materials for lithium-ion batteries. Mater Lett, 2012, 84:9
    [12]
    Mai Y J, Zhang D, Qiao Y Q, et al. MnO/reduced graphene oxide sheet hybrid as an anode for Li-ion batteries with enhanced lithium storage performance. J Power Sources, 2012, 216:201
    [13]
    Zhang K J, Han P X, Gu L, et al. Synthesis of nitrogen-doped MnO/graphene nanosheets hybrid material for lithium ion batteries. ACS Appl Mater Interfaces, 2012, 4(2):658
    [14]
    Wu Z S, Zhou G M, Yin L C, et al. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy, 2012, 1(1):107
    [15]
    Srivastava M, Singh J, Kuila T, et al. Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries. Nanoscale, 2015, 7:4820
    [16]
    Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6:183
    [17]
    Allen M J, Tung V C, Kaner R B. Honeycomb carbon:a review of graphene. Chem Rev, 2009, 110(1):132
    [18]
    Kucinskis G, Bajars G, Kleperis J. Graphene in lithium ion battery cathode materials:A review. J Power Sources, 2013, 240:66
    [19]
    Yang M, Zhong Y R, Zhou X L, et al. Ultrasmall MnO@Nrich carbon nanosheets for high-power asymmetric supercapacitors. J Mater Chem A, 2014, 2:12519
    [20]
    Xu G B, Jiang F, Ren Z A, et al. Polyhedral MnO nanocrystals anchored on reduced graphene oxide as an anode material with superior lithium storage capability. Ceram Int, 2015, 41(9):10680
    [21]
    Zou B K, Zhang Y Y, Wang J Y, et al. Hydrothermally enhanced MnO/reduced graphite oxide composite anode materials for high performance lithium-ion batteries. Electrochim Acta, 2015, 167:25
    [22]
    Sun Y M, Hu X L, Luo W, et al. Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv Funct Mater, 2013, 23(19):2436
    [23]
    Zhao G X, Huang X B, Wang X K, et al. Synthesis and lithiumstorage properties of MnO/reduced graphene oxide composites derived from graphene oxide plus the transformation of Mn(vi) to Mn(ii) by the reducing power of graphene oxide. J Mater Chem A, 2015, 3(1):297
    [24]
    Petnikota S, Srikanth V V S S, Nithyadharseni P, et al. Sustainablegraphenothermal reduction chemistry to obtain MnO nanonetwork supported exfoliated graphene oxide composite and its electrochemical characteristics. ACS Sustainable Chem Eng, 2015, 3(12):3205
    [25]
    Zhang S, Zhu L X, Song H H, et al. Enhanced electrochemical performance of MnO nanowire/graphene composite during cycling as the anode material for lithium-ion batteries. Nano Energy, 2014, 10:172
    [26]
    Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide. ACS Nano, 2010, 4(8):4806
    [27]
    Campos-Delgado J, Romo-Herrera J M, Jia X T, et al. Bulk production of a new form of sp2 carbon:crystalline graphene nanoribbons. Nano Lett, 2008, 8(9):2773
    [28]
    Gao W, Alemany L B, Ci L J, et al. New insights into the structure and reduction of graphite oxide. Nat Chem, 2009, 1:403
    [29]
    Moulder J F. Handbook of X-Ray Photoelectron Spectroscopy:A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Eden Prairie:Physical Electronics, 1995
    [30]
    Hsieh C T, Lin C Y, Lin J Y. High reversibility of Li intercalation and de-intercalation in MnO-attached graphene anodes for Liion batteries. Electrochim Acta, 2011, 56(24):8861
    [31]
    Stankovich S, Piner R D, Chen X Q, et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J Mater Chem, 2006, 16:155
    [32]
    Schniepp H C, Li J L, McAllister M J, et al. Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B, 2006, 110(17):8535
    [33]
    Delmer O, Balaya P, Kienle L, et al. Enhanced potential of amorphous electrode materials:Case study of RuO2. Adv Mater, 2008, 20(3):501
    [34]
    Xia Y, Xiao Z, Dou X, et al. Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithiumion batteries. ACS Nano, 2013, 7(8):7083
    [35]
    Zhong K F, Zhang B, Luo S H, et al. Investigation on porous MnO microsphere anode for lithium ion batteries. J Power Sources, 2011, 196(16):6802
    [36]
    Luo W, Hu X L, Sun Y M, et al. Controlled synthesis of mesoporous MnO/C networks by microwave irradiation and their enhanced lithium-storage properties. ACS Appl Mater Interfaces, 2013, 5(6):1997
    [37]
    Cao K Z, Jiao L F, Xu H, et al. Reconstruction of mini-hollow polyhedron Mn2O3 derived from MOFs as a high-performance lithium anode material. Adv Sci, 2016, 3:1500185
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (900) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频