<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 3
Mar.  2017
Turn off MathJax
Article Contents
ZHAO Huan-juan, John H. S. LEE, ZHANG Ying-hua, YAN Yi-ran. Precise mechanism of triple point passage removing soot on soot-coated surface[J]. Chinese Journal of Engineering, 2017, 39(3): 335-341. doi: 10.13374/j.issn2095-9389.2017.03.003
Citation: ZHAO Huan-juan, John H. S. LEE, ZHANG Ying-hua, YAN Yi-ran. Precise mechanism of triple point passage removing soot on soot-coated surface[J]. Chinese Journal of Engineering, 2017, 39(3): 335-341. doi: 10.13374/j.issn2095-9389.2017.03.003

Precise mechanism of triple point passage removing soot on soot-coated surface

doi: 10.13374/j.issn2095-9389.2017.03.003
  • Received Date: 2016-05-16
  • To understand the precise mechanism by what the soot is removed when the triple point passed over the smoked inner wall foil or smoked end-on glass and promote the research on spinning detonation structure, smoked end-on glasses and inner wall smoked foils were established to record the trajectories of triple-shock Mach intersections of spinning detonation. Detonation records of unstable, a little stable and very stable premixed mixtures were obtained in wall foils and end-on glasses. Smoked end-on glass of 2H2 + O2 + 3Ar gave clear records. Sing-head spinning detonation records of 2H2 + O2 + 3Ar indicates that the internal structure of the spinning detonation is not stable while the inner wall results are similar. The cause why soot can be adsorbed on foils and glasses is one factor. Another factor is that reaction characteristics performance of different mixtures should be considered according to above experimental results. The soot can be removed when bond energy is bigger than adsorption energy between the soot and the foil or glass surface. What's more, the carbon molecules particles in detonation front reaction may lead to carbon accumulation and affect the records. In another hand, the strength of reflected shock wave may affect the clarity of the records. Finally, the precise mechanism is affected by characteristics of mixtures. Using appropriate surface roughness and soot particle size according to mixtures characteristics can give satisfying detonation structure records.

     

  • loading
  • [2]
    Voitsekhovskii B V. Stationary detonation. Dokl USSR Acad Sci, 1959, 129(6):1254
    [3]
    Bykowski F A, Mitrofanov V V, Vedernikov E F. Continuous detonation combustion of fuel-air mixtures. Combust Explo Shock Waves, 1997, 33(3):344
    [4]
    Bykovskii F A, Zhdan S A, Verdernikov E F. Continuous spin detonation in ducted annular combustors:2. Combustor with an expanding annular channel. Combust Explo Shock Waves, 2008, 44(3):330
    [5]
    Bykovskii F A, Zhdam S A, Vedernikov E F. Realization and modeling of continuous spin detonation of a hydrogen oxygen mixture in flow-type combustors. Combust Explo Shock Waves, 2009, 45(5):716
    [6]
    Wang Y H, Wang J P. Coexistence of detonation with deflagration in rotating detonation engines. Int J Hydrogen Energy, 2016, 41(32):14302
    [7]
    Yang C L, Wu X S, Ma H, et al. Experimental research on initiation characteristics of a rotating detonation engine. Exp Therm Fluid Sci, 2016, 71:154
    [8]
    Daniau E, Falempin F, Getin N, et al. Design of a continuous detonation wave engine for space application//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. California, 2006:4794
    [10]
    Wu Y W, Lee J H S. Stability of spinning detonation waves. Combust Flame, 2015, 162(6):2660
    [11]
    Mazaheri K, Mahmoudi Y, Sabzpooshani M, et al. Experimental and numerical investigation of propagation mechanism of gaseous detonations in channels with porous walls. Combust Flame, 2015, 162(6):2638
    [12]
    Hishida M, Fujiwara T, Wolanski P. Fundamentals of rotating detonations. Shock Waves, 2009, 19(1):1
    [13]
    Zhdan S A, Bykovskii F A, Vedernikov E F. Mathmatical modeling of a rotating detonation wave in a hydrogen-oxygen mixture. Combust Explos Shock Waves, 2007, 43(4):449
    [14]
    Pan Z H, Fan B C, Zhang X D, et al. Wavelet pattern and selfsustained mechanism of gaseous detonation rotating in a coaxial cylinder. Combust Flame, 2011, 158(11):2220
    [15]
    Trotsyuk A V, Fomin P A, Vasil'ev A A. Numerical study of cellular detonation structures of methane mixtures. J Loss Prev Proc Ind, 2015, 36:394
    [16]
    Lee J H S. The Detonation Phenomenon. Cambridge:Cambridge University Press, 2008
    [19]
    Zhang B, Mehrjoo N, Ng H D, et al. On the dynamic detonation parameters in acetylene-oxygen mixtures with varying amount of argon dilution. Combust Flame, 2014, 161(5):1390
    [26]
    Wu Y, Chri Stensen K T. Population trends of spanwise vortices in wall turbulence. J Fluid Mech, 2006, 568:55
    [27]
    Head M R, Bandyopadhyay P. New aspects of turbulent boundary-layer structure. J Fluid Mech, 1981, 107:297
    [29]
    Zhao H J, Lee J H S, Lee J L, et al. Quantitative comparison of cellular patterns of stable and unstable mixtures. Shock Waves, 2016, 26(5):621
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (756) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频