<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
ZHANG Chao, LI Qing, WANG Wei-qian, CHEN Peng, FENG Yi-nan. Immune particle swarm optimization algorithm based on the adaptive search strategy[J]. Chinese Journal of Engineering, 2017, 39(1): 125-132. doi: 10.13374/j.issn2095-9389.2017.01.016
Citation: ZHANG Chao, LI Qing, WANG Wei-qian, CHEN Peng, FENG Yi-nan. Immune particle swarm optimization algorithm based on the adaptive search strategy[J]. Chinese Journal of Engineering, 2017, 39(1): 125-132. doi: 10.13374/j.issn2095-9389.2017.01.016

Immune particle swarm optimization algorithm based on the adaptive search strategy

doi: 10.13374/j.issn2095-9389.2017.01.016
  • Received Date: 2016-01-29
  • The particle swarm algorithm is often trapped in a local optimum due to poor diversity, resulting in a premature stagnation phenomenon. In order to overcome this shortcoming, an immune particle swarm optimization algorithm based on the adaptive search strategy was proposed in this paper. Firstly, the concentration mechanism was improved. Secondly, in order to make full use of the resources of the particle population, the number of particles of sub-populations was controlled by the maximum concentration of particles. Finally, the inferior sub-populations were vaccinated, and the maximum concentration of particles was used to control the search range of the vaccine, so the population degradation was avoided, and the convergence accuracy and the global search ability of the algorithm were improved. Simulation results show the effectiveness and superiority of the proposed algorithm in solving the complex function optimization problems.

     

  • loading
  • [1]
    Kennedy J, Eberhart R. Particle swarm optimization//Proceeding of IEEE International Conference on Neural Networks. Nagoya, 1995:1942
    [3]
    Khare A, Rangekar S. A review of particle swarm optimization and its applications in Solar Photovoltaic system. Appl Soft Comput, 2013, 13(5):2997
    [5]
    Zhou X C, Zhao Z X, Zhou K J, et al. Remanufacturing closedloop supply chain network design base on genetic particle swarm optimization algorithm. J Cent South Univ, 2012, 19(2):482
    [7]
    Woldemariam K M, Yen G G. Vaccine-enhanced artificial immune system for multimodal function optimization. IEEE Trans Syst Man Cybern Part B, 2010, 40(1):218
    [8]
    Giardini G, Kalmar-Nagy T. Genetic algorithm for multi-agent space exploration//2007 AIAA InfoTech at Aerospace Conference. California, 2007
    [10]
    Liu F, Peng B. Immune particle swarm optimization beats genetic algorithms//2010 Second WRI Global Congress on Intelligent Systems (GCIS). New York, 2010:233
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (1162) PDF downloads(90) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频