<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
AN Fu-qiang, ZHAO Jian-yuan, CHEN Lu-fan, HUANG Jun, LI Ping. Consistency study on 18650 cells used in electric vehicles[J]. Chinese Journal of Engineering, 2017, 39(1): 107-114. doi: 10.13374/j.issn2095-9389.2017.01.014
Citation: AN Fu-qiang, ZHAO Jian-yuan, CHEN Lu-fan, HUANG Jun, LI Ping. Consistency study on 18650 cells used in electric vehicles[J]. Chinese Journal of Engineering, 2017, 39(1): 107-114. doi: 10.13374/j.issn2095-9389.2017.01.014

Consistency study on 18650 cells used in electric vehicles

doi: 10.13374/j.issn2095-9389.2017.01.014
  • Received Date: 2016-03-18
  • The consistency of five different 18650 cells used in electric vehicles both at the initial and aged states was evaluated by electrochemical test and statistical analysis. The effects of current, temperature and voltage on the cell consistency were examined. The results show that, to ensure a reasonable level of the cell consistency, the current rates during the charging and discharging processes should be less than 0.3C and 0.5C, respectively, and the operating temperature should be higher than 0℃. In addition, the cell sorting process is crucial to control the cell consistency. An additional descriptor, the k value, representing the decreasing rate of open circuit voltage during calendar test, should be involved in the cell sorting.

     

  • loading
  • [1]
    Miyatake S, Susuki Y, Hikihara T, et al. Discharge characteristics of multicell lithium-ion battery with nonuniform cells. J Power Sources, 2013, 241:736
    [5]
    Jannesari H, Emami M D, Ziegler C. Effect of electrolyte transport properties and variations in the morphological parameters on the variation of side reaction rate across the anode electrode and the aging of lithium ion batteries. J Power Sources, 2011, 196(22):9654
    [6]
    Kenney B, Darcovich K, MacNeil D D, et al. Modelling the impact of variations in electrode manufacturing on lithium-ion battery modules. J Power Sources, 2012, 213:391
    [7]
    Santhanagopalan S, White R E. Quantifying cell-to-cell variations in lithium ion batteries. Int J Electrochem, 2012, 2012:1
    [8]
    Dubarry M, Vuillaume N, Liaw B Y. Origins and accommodation of cell variations in Li-ion battery pack modeling. Int J Energy Res, 2010, 34(2):216
    [9]
    Dubarry M, Vuillaume N, Liaw B Y. From single cell model to battery pack simulation for Li-ion batteries. J Power Sources, 2009, 186(2):500
    [10]
    Chiu K C, Lin C H, Yeh S F, et al. Cycle life analysis of series connected lithium-ion batteries with temperature difference. J Power Sources, 2014, 263:75
    [12]
    Gogoana R, Pinson M B, Bazant M Z, et al. Internal resistance matching for parallel-connected lithium-ion cells and impacts on battery pack cycle life. J Power Sources, 2014, 252:8
    [14]
    Zhang J B, Huang J, Li Z, et al. Comparison and validation of methods for estimating heat generation rate of large-format lithium-ion batteries. J Therm Anal Calorim, 2014, 117(1):447
    [15]
    Zhang J B, Huang J, Chen L F, et al. Lithium-ion battery discharge behaviors at low temperatures and cell-to-cell uniformity. J Automot Saf Energy, 2014, 5(4):391
    [16]
    Huang J, Li Z, Zhang J B, et al. An analytical three-scale impedance model for porous electrode with agglomerates in lithiumion batteries. J Electrochem Soc, 2015, 162(4):A585
    [17]
    Huang J, Ge H, Li Z, et al. An agglomerate model for the impedance of secondary particle in lithium-ion battery electrode. J Electrochem Soc, 2014, 161(8):E3202
    [18]
    An F Q, Huang J, Wang C Y, et al. Cell sorting for parallel lithium-ion battery systems:rvaluation based on an electric circuit model. J Energy Storage, 2016, 6:195
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (682) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频