<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
SONG Peng-cheng, LIU Wen-bo, LIU Lu, ZHANG Chi, YANG Zhi-gang. Austenite growth behavior of Fe-13Cr-5Ni martensitic stainless steel under continuous heating[J]. Chinese Journal of Engineering, 2017, 39(1): 68-74. doi: 10.13374/j.issn2095-9389.2017.01.009
Citation: SONG Peng-cheng, LIU Wen-bo, LIU Lu, ZHANG Chi, YANG Zhi-gang. Austenite growth behavior of Fe-13Cr-5Ni martensitic stainless steel under continuous heating[J]. Chinese Journal of Engineering, 2017, 39(1): 68-74. doi: 10.13374/j.issn2095-9389.2017.01.009

Austenite growth behavior of Fe-13Cr-5Ni martensitic stainless steel under continuous heating

doi: 10.13374/j.issn2095-9389.2017.01.009
  • Received Date: 2016-03-24
  • Microstructure transformation of Fe-13Cr-5Ni martensitic stainless steel during continuous heating was investigated by optical microscopy, transmission electronic microscopy, X-ray diffraction, and microhardness testing. Experimental results show that at the heating rate of 10℃·s-1,there is an austenite memory phenomenon after heating to the austenite phase region and quenching to room temperature. Austenite tends to nucleate and grow at lath boundaries in an acicular shape, which has Kurdjumov-Sachs (K-S) orientation relationships with the parent phase. Furthermore, heating to different temperatures in the dual-phase region and quenching to room temperature, the amount of retained austenite in samples firstly increases, gets to the peak at 650℃, and then decreases with the increasing of annealing temperature. This trend is coincident with the trend of micro-hardness of the same samples.

     

  • loading
  • [1]
    Park E S, Yoo D K, Sung J H, et al. Formation of reversed austenite during tempering of 14Cr-7Ni-0.3Nb-0.7Mo-0.03C super martensitic stainless steel. Met Mater Int, 2004, 10(6):521
    [2]
    Apple C A, Krauss G. The effect of heating rate on the martensite to austenite transformation in Fe-Ni-C alloys. Acta Metall, 1972, 20(7):849
    [3]
    Leem D S, Lee Y D, Jun J H, et al. Amount of retained austenite at room temperature after reverse transformation of martensite to austenite in an Fe-13% Cr-7% Ni-3% Si martensitic stainless steel. Scripta Mater, 2001, 45(7):767
    [4]
    Tomimura K, Takaki S, Tokunaga Y. Reversion mechanism from deformation induced martensite to austenite in metastable austenitic stainless steels. ISIJ Int, 1991, 31(12):1431
    [5]
    Chaus A S, Rudnitskii F I, Murgas M. Structural inheritance and special features of fracture of high-speed steels. Met Sci Heat Treat, 1997, 39(2):53
    [6]
    Hara T, Maruyama N, Shinohara Y, et al. Abnormal α to βtransformation behavior of steels with a martensite and bainite microstructure at a slow reheating rate. ISIJ Int, 2009, 49(11):1792
    [7]
    Lee Y K, Shin H C, Leem D S, et al. Reverse transformation mechanism of martensite to austenite and amount of retained austenite after reverse transformation in Fe-3Si-13Cr-7Ni(wt-%) martensitic stainless steel. Mater Sci Technol, 2003, 19(3):393
    [8]
    Nakada N, Tsuchiyama T, Takaki S, et al. Variant selection of reversed austenite in lath martensite. ISIJ Int, 2007, 47(10):1527
    [9]
    Liu L, Yang Z G, Zhang C. Effect of retained austenite on austenite memory of a 13% Cr-5% Ni martensitic steel. J Alloys Compd, 2013, 577(Suppl 1):S654
    [10]
    Kimmins S T, Gooch D J. Austenite memory effect in 1Cr-1Mo-0.75V (Ti, B) steel. Met Sci, 1983, 17(11):519
    [11]
    Hassan S. Microstructure Evolution during Reverse Transformation in Fe-high Ni Martensitic Alloys[Dissertation]. Sendai:Tohoku University, 2013
    [12]
    D'yachenko S S. Heredity in phase transformations:mechanism of the phenomenon and effect on the properties. Met Sci Heat Treat, 2000, 42(4):122
    [13]
    Matsuda S, Okamura Y. The later stage of reverse transformation in low-C low-alloy steel. Trans ISIJ, 1974, 14(6):444
    [14]
    Nakagawa H, Miyazaki T, Yokota H. Effects of aging temperature on the microstructure and mechanical properties of 1.8Cu-7.3Ni-15.9Cr-1.2Mo-low C,N martensitic precipitation hardening stainless steel. J Mater Sci, 2000, 35(9):2245
    [16]
    Gysel W, Gerber E, Trautwein A. CA6NM:new development based on 20 years' experience. Stainless Steel Cast, 1982, 756(3):403
    [17]
    Song P C, Liu W B, Zhang C, et al. Reversed austenite growth behavior of a 13% Cr-5% Ni stainless steel during intercritical annealing. ISIJ Int, 2016, 56(1):148
    [18]
    Song P C, Ji Y Z, Chen L, et al. Phase-field simulation of austenite growth behavior:insights into the austenite memory phenomenon. Comput Mater Sci, 2016, 117:139
    [19]
    Liu L, Yang Z G, Zhang C, et al. An in situ study on austenite memory and austenitic spontaneous recrystallization of a martensitic steel. Mater Sci Eng A, 2010, 527(27):7204
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (799) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频