Citation: | ZHANG Hai-gang, ZHANG Sen, YIN Yi-xin. Multi-class fault diagnosis of BF based on global optimization LS-SVM[J]. Chinese Journal of Engineering, 2017, 39(1): 39-47. doi: 10.13374/j.issn2095-9389.2017.01.005 |
[4] |
Liu L M, Wang A N, Sha M, et al. Fault diagnostics of blast furnace based on CLS-SVM//2010 Chinese Conference on Pattern Recognition. IEEE, 2010
|
[7] |
Pujol O, Radeva P, Vitria J. Discriminant ECOC:a heuristic method for application dependent design of error correcting output codes. IEEE Trans Pattern Anal Mach Intell, 2006, 28(6):1007
|
[8] |
Suykens J A K, Vandewalle J. Least squares support vector machine classifiers. Neural Process Lett, 1999, 9(3):293
|
[10] |
Gestel T V, Suykens J A K, Lanckriet G, et al. Multiclass LS-SVMs:moderated outputs and coding-decoding schemes. Neural Process Lett, 2002, 15(1):45
|
[11] |
Liu L M, Wang A N, Sha M, et. al. Multi-class classification methods of cost-conscious LS-SVM for fault diagnosis of blast furnace. J Iron Steel Res Int, 2011, 18(10):17
|
[13] |
Allwein E, Schapire R, Singer Y. Reducing multiclass to binary:a unifying approach for margin classifiers. Mach Learn Res, 2002, 12(1):113
|
[17] |
Cao L J, Chua K S, Chong W K, et al. A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine. Neurocomputing, 2003, 55(1-2):321
|