<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 39 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
LU Guang-hua, YUE Chang-sheng, PENG Ben, QIU Gui-bo, GUO Min, ZHANG Mei. Review of research progress on the remediation technology of mercury contaminated soil[J]. Chinese Journal of Engineering, 2017, 39(1): 1-12. doi: 10.13374/j.issn2095-9389.2017.01.001
Citation: LU Guang-hua, YUE Chang-sheng, PENG Ben, QIU Gui-bo, GUO Min, ZHANG Mei. Review of research progress on the remediation technology of mercury contaminated soil[J]. Chinese Journal of Engineering, 2017, 39(1): 1-12. doi: 10.13374/j.issn2095-9389.2017.01.001

Review of research progress on the remediation technology of mercury contaminated soil

doi: 10.13374/j.issn2095-9389.2017.01.001
  • Received Date: 2016-07-05
  • Among heavy metals which contaminate soil, mercury has caused the attention of environmentalists because of its properties of wide spreading and high toxicity. Moreover, along with the development of modern industry, a great amount of mercury has been discharged into soil. This not only poses great threat on environmental security, but also puts forward urgent requirements for soil remediation. In combination with the research status of soil remediation, the origin and main species of mercury in contaminated soil are introduced. Remediation methods such as soil washing, soil stabilization/solidification, heat treatment, electrokinetic remediation, nanotechnology and biological techniques are systematically reviewed. The development prospect is put forward as a result, providing effective reference for environmentalists.

     

  • loading
  • [1]
    Yin R S, Feng X B, Shi W F. Application of the stable-isotope system to the study of sources and fate of Hg in the environment:a review. Appl Geochem, 2010, 25(10):1467
    [2]
    Xu J Y, Bravo A G, Lagerkvist A, et al. Sources and remediation techniques for mercury contaminated soil. Environ Int, 2015, 74:42
    [3]
    Santos-Francés F, García-Sánchez A, Alonso-Rojo P, et al. Distribution and mobility of mercury in soils of a gold mining region, Cuyuni river basin, Venezuela. J Environ Manage, 2011, 92(4):1268
    [4]
    Cheng J P, Yuan T, Wang W H, et al. Mercury pollution in two typical areas in Guizhou Province, China and its neurotoxic effects in the brains of rats fed with local polluted rice. Environ Geochem Health, 2006, 28(6):499
    [5]
    Wang J X, Feng X B, Anderson C W N, et al. Ammonium thiosulphate enhanced phytoextraction from mercury contaminated soil:results from a greenhouse study. J Hazard Mater, 2011, 186(1):119
    [6]
    Arctic Monitoring and Assessment Programme (AMAP)/United Nations Environment Programme (UNEP). Technical Background Report for the Global Mercury Assessment. Geneva, 2013:5
    [11]
    Kabata-Pendias A. Trace Elements in Soils and Plants. 4th Ed. London:CRC Press, 2010
    [12]
    Issaro N, Abi-Ghanem C, Bermond A. Fractionation studies of mercury in soils and sediments:a review of the chemical reagents used for mercury extraction. Anal Chim Acta, 2009, 631(1):1
    [13]
    Evanko C R, Dzombak D A. Remediation of Metals-contaminated Soils and Groundwater. Ground-water Remediation Technologies Analysis Center, 1997
    [14]
    Mercier G, Duchesne J, Blackburn D. Prediction of metal removal efficiency from contaminated soils by physical methods. J Environ Eng, 2001, 127(4):348
    [15]
    Sierra C, Menéndez-Aguado J M, Afif E, et al. Feasibility study on the use of soil washing to remediate the As-Hg contamination at an ancient mining and metallurgy area. J Hazard Mater, 2011, 196:93
    [16]
    Dermont G, Bergeron M, Mercier G, et al. Soil washing for metal removal:a review of physical/chemical technologies and field applications. J Hazard Mater, 2008, 152(1):1
    [17]
    Dermont G, Bergeron M, Mercier G, et al. Metal-contaminated soils:remediation practices and treatment technologies. Pract Period Hazard Toxic Radioact Waste Manage, 2008, 12(3):188
    [18]
    Bernaus A, Gaona X, Ree D V, et al. Determination of mercury in polluted soils surrounding a chlor-alkali plant:direct speciation by X-ray absorption spectroscopy techniques and preliminary geochemical characterisation of the area. Anal Chim Acta, 2006, 565(1):73
    [19]
    Fernández-Martínez R, Rucandio M I. Study of the suitability of HNO3 and HCl as extracting agents of mercury species in soils from cinnabar mines. Anal Bioanal Chem, 2005, 381(8):1499
    [20]
    Smolińska B, Król K. Leaching of mercury during phytoextraction assisted by EDTA, KI and citric acid. J Chem Technol Biotechnol, 2012, 87(9):1360
    [21]
    Wasay S A, Arnfalk P, Tokunaga S. Remediation of a soil polluted by mercury with acidic potassium iodide. J Hazard Mater, 1995, 44(1):93
    [22]
    Subirés-Muñoz J D, García-Rubio A, Vereda-Alonso C, et al. Feasibility study of the use of different extractant agents in the remediation of a mercury contaminated soil from Almaden. Sep Purif Technol, 2011, 79(2):151
    [23]
    Klasson K T, Koran L J, Gates D D, et al. Removal of mercury from solids using the potassium iodide/iodine leaching process//Office of Scientific & Technical Information Technical Reports. Oak Ridge, 1997:9
    [25]
    Ray A B, Selvakumar A. Laboratory studies on the remediation of mercury contaminated soils. Rem J, 2000, 10(4):49
    [26]
    Nascimento C W A D, Amarasiriwardena D, Xing B S. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environ Pollut, 2006, 140(1):114
    [27]
    Paria S, Yuet P K. Solidification-stabilization of organic and inorganic contaminants using portland cement:a literature review. Environ Rev, 2006, 14(4):217
    [29]
    Zhang X Y, Wang Q C, Zhang S Q, et al. Stabilization/solidification (S/S) of mercury-contaminated hazardous wastes using thiol-functionalized zeolite and Portland cement. J Hazard Mater, 2009, 168(2):1575
    [30]
    Zhang J, Bishop P L. Stabilization/solidification (S/S) of mercury-containing wastes using reactivated carbon and Portland cement. J Hazard Mater, 2002, 92(2):199
    [31]
    Chattopadhyay S. Evaluation of Chemically Bonded Phosphate Ceramics for Mercury Stabilization of a Mixed Synthetic Waste. Ohio:US Environmental Proectection agency, Office of Research and Development, National Risk Management Research Laboratory, 2003:4
    [32]
    Wagh A S, Singh D, Jeong S Y. Mercury stabilization in chemically bonded phosphate ceramics//Invited paper for Environmental Protection Agency's Workshop on Mercury Products, Processes, Waste, and the Environment:Eliminating, Reducing and Managing Risks. Baltimore, 2000:5
    [33]
    López-Delgado A, López F A, Alguacil F J, et al. A microencapsulation process of liquid mercury by sulfur polymer stabilization/solidification technology. Part I:characterization of materials. Rev Metal, 2012, 48(1):45
    [34]
    Piao H S, Bishop P L. Stabilization of mercury-containing wastes using sulfide. Environ Pollut, 2006, 139(3):498
    [35]
    Randall P, Chattopadhyay S. Advances in encapsulation technologies for the management of mercury-contaminated hazardous wastes. J Hazard Mater, 2004, 114(1):211
    [36]
    Chang T C, Yen J H. On-site mercury-contaminated soils remediation by using thermal desorption technology. J Hazard Mater, 2006, 128(2):208
    [37]
    Sierra M J, Millán R, López F A, et al. Sustainable remediation of mercury contaminated soils by thermal desorption. Environ Sci Pollut Res, 2016, 23(5):4898
    [38]
    Huang Y T, Hseu Z Y, Hsi H C. Influences of thermal decontamination on mercury removal, soil properties, and repartitioning of coexisting heavy metals. Chemosphere, 2011, 84(9):1244
    [39]
    Comuzzi C, Lesa B, Aneggi E, et al. Salt-assisted thermal desorption of mercury from contaminated dredging sludge. J Hazard Mater, 2011, 193:177
    [40]
    Ma F J, Zang Q, Xu D P, et al. Mercury removal from contaminated soil by thermal treatment with FeCl3, at reduced temperature. Chemosphere, 2014, 117:388
    [41]
    Richter R B, Flachberger H. Soil washing and thermal desorption:reliable techniques for remediating materials contaminated with mercury. Berg Hüttenmänn Monatsh, 2010, 155(12):571
    [42]
    Virkutyt J, SillanpääM, Latostenmaa P. Electrokinetic soil remediation-critical overview. Sci Total Environ, 2002, 289(1):97
    [43]
    Reddy K R, Chaparro C. Electrokinetic remediation of mercurycontaminated soils. J Environ Eng, 2003, 129(12):1137
    [44]
    Negrete J L M, Barboza E L. Electrokinetic remediation of mercury-contaminated soil, from the mine El Alacran-San Jorge river basin, Cordoba-Colombia. Revista Facultad de Ingenieria Universidad de Antioquia, 2013, 68:136
    [45]
    Darban A K, Ayati B, Yong R N, et al. Enhanced electrokinetic remediation of mercury-contaminated tailing dam sediments. J ASTM Int, 2009, 6(5):1
    [46]
    Herrada R A, Pérez-Corona M, Shrestha R A, et al. Electrokinetic remediation of polluted soil using nano-materials:nano-iron case//Evaluation of Electrochemical Reactors as a New Way to Environmental Protection, 2014:41
    [47]
    Shen Z M, Zhang J D, Qu L Y, et al. A modified EK method with an I-/I 2 lixiviant assisted and approaching cathodes to remedy mercury contaminated field soils. Environ Geol, 2009, 57(6):1399
    [50]
    Wang X H, Yang L, Zhang J P, et al. Preparation and characterization of chitosan-poly(vinyl alcohol)/bentonite nanocomposites for adsorption of Hg(Ⅱ) ions. Chem Eng J, 2014, 251:404
    [51]
    Gong Y Y, Liu Y Y, Xiong Z, et al. Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles. Nanotechnology, 2012, 23(29):294007
    [52]
    Zhang J Y, Li C X, Wang D Y, et al. The effect of different TiO2 nanoparticles on the release and transformation of mercury in sediment. J Soils Sediments, 2017,17(2):536
    [54]
    Chaney R L, Malik M, Li Y M, et al. Phytoremediation of soil metals. Curr Opin Biotechnol, 1997, 8(3):279
    [56]
    Pérez-Sanz A, Millán R, Sierra M J, et al. Mercury uptake by Silene vulgaris, grown on contaminated spiked soils. J Environ Manage, 2012, 95(Supp l):S233
    [57]
    Smolińska B, Cedzyńska K. EDTA and urease effects on Hg accumulation by Lepidium sativum. Chemosphere, 2007, 69(9):1388
    [58]
    Rugh C L, Senecoff J F, Meagher R B, et al. Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol, 1998, 16(10):925
    [59]
    Padmavathiamma P K, Li L Y. Phytoremediation technology:hyper-accumulation metals in plants. Water Air Soil Pollut, 2007, 184(1):105
    [60]
    Sinha A, Khare S K. Mercury bioremediation by mercury accumulating Enterobacter sp. cells and its alginate immobilized application. Biodegradation, 2012, 23(1):25
    [61]
    Von Canstein H, Li Y, Leonhäuser J, et al. Spatially oscillating activity and microbial succession of mercury-reducing biofilms in a technical-scale bioremediation system. Appl Environ Microbiol, 2002, 68(4):1938
    [62]
    He Z Q, Siripornadulsil S, Sayre R T, et al. Removal of mercury from sediment by ultrasound combined with biomass (transgenic Chlamydomonas reinhardtii). Chemosphere, 2011, 83(9):1249
    [63]
    Dash H R, Das S. Bioremediation of mercury and the importance of bacterial mer genes. Int Biodeterior Biodegrad, 2012, 75:207
    [64]
    Park J, Song W Y, Ko D, et al. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J, 2012, 69(2):278
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (907) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频