<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 38 Issue 8
Jul.  2021
Turn off MathJax
Article Contents
XU Miao-fei, GAO Yong-tao, JIN Ai-bing, ZHOU Yu, GUO Li-jie, LIU Guang-sheng. Prediction of cemented backfill strength by ultrasonic pulse velocity and BP neural network[J]. Chinese Journal of Engineering, 2016, 38(8): 1059-1068. doi: 10.13374/j.issn2095-9389.2016.08.003
Citation: XU Miao-fei, GAO Yong-tao, JIN Ai-bing, ZHOU Yu, GUO Li-jie, LIU Guang-sheng. Prediction of cemented backfill strength by ultrasonic pulse velocity and BP neural network[J]. Chinese Journal of Engineering, 2016, 38(8): 1059-1068. doi: 10.13374/j.issn2095-9389.2016.08.003

Prediction of cemented backfill strength by ultrasonic pulse velocity and BP neural network

doi: 10.13374/j.issn2095-9389.2016.08.003
  • Received Date: 2015-10-11
    Available Online: 2021-07-22
  • Tailing-cemented backfill is a cement-based heterogeneous composite whose uniaxial compressive strength (UCS) and ultrasonic pulse velocity (UPV) are dependent on cement dosage, solid content, sample type, etc. In this paper, uniaxial compressive test and ultrasonic pulse velocity test of three types of backfill samples (7.07 cm×7.07 cm×7.07 cm cube, Φ5 cm×10 cm cylinder and Φ7 cm×14 cm cylinder) were performed, and the effects of cement dosage, solid content and sample type on the backfill strength and ultrasonic pulse velocity were investigated by grey correlative degree analysis. The results show that cement dosage is the key to the backfill strength with a correlative degree of 0.837, while the ultrasonic pulse velocity is mostly influenced by solid content with a correlation degree of 0.712. An exponential prediction relation between UCS and UPV and a BP neural network prediction model were built, and they were validated by F-test and t-test of statistical analysis, respectively. The methods proposed can be new approaches for predicting the backfill strength.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (397) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频