<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 38 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
WU Sen, JIANG Dan-dan, WANG Qiang. HABOS clustering algorithm for categorical data[J]. Chinese Journal of Engineering, 2016, 38(7): 1017-1024. doi: 10.13374/j.issn2095-9389.2016.07.018
Citation: WU Sen, JIANG Dan-dan, WANG Qiang. HABOS clustering algorithm for categorical data[J]. Chinese Journal of Engineering, 2016, 38(7): 1017-1024. doi: 10.13374/j.issn2095-9389.2016.07.018

HABOS clustering algorithm for categorical data

doi: 10.13374/j.issn2095-9389.2016.07.018
  • Received Date: 2016-01-05
    Available Online: 2021-07-22
  • The clustering algorithm based on sparse feature vector for categorical attributes(CABOSFVC) is an efficient high-dimensional clustering method for categorical data. Sparse feature dissimilarity(SFD) is used to calculate the distance and sparse feature vector is used to achieve data compression. However,CABOSFVC algorithm is dependent upon SFD upper limit parameter for which there is no guidance for configuration. Aimed at solving the problem that CABOSFVC algorithm is sensitive to this parameter,a new heuristic hierarchical clustering algorithm of categorical data based on SFD(HABOS) was proposed in this paper. With the constraint of the upper limit number of clusters,this algorithm applied agglomerative hierarchical clustering and the new internal clustering validation index based on SFD(CVISFD) which was used to measure the results heuristically to achieve the best choice of the clustering level. Three UCI benchmark data sets were used to compare the improved algorithm with the traditional ones. The empirical tests show that HABOS increases the clustering accuracy and stability effectively.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (231) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频