<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 37 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
WANG Yi-ding, YU Xiao-jie, LI Chen, MU Zhi-chun. Hand-dorsa vein identification based on local macroscopic and microscopic characteristics[J]. Chinese Journal of Engineering, 2015, 37(7): 965-970. doi: 10.13374/j.issn2095-9389.2015.07.020
Citation: WANG Yi-ding, YU Xiao-jie, LI Chen, MU Zhi-chun. Hand-dorsa vein identification based on local macroscopic and microscopic characteristics[J]. Chinese Journal of Engineering, 2015, 37(7): 965-970. doi: 10.13374/j.issn2095-9389.2015.07.020

Hand-dorsa vein identification based on local macroscopic and microscopic characteristics

doi: 10.13374/j.issn2095-9389.2015.07.020
  • Received Date: 2014-03-30
    Available Online: 2021-07-10
  • As hand-dorsa vein identification is non-contact,not easily polluted,and has other unique advantages,it becomes a new research and application hotspot of biometric identification methods. The focus of this paper is how to extract hand-dorsa vein image characteristics with high identification rate and robustness. This paper briefly describes the basic principle of local binary pattern(LBP) and improved LBP methods,and analyzes the disadvantages of these methods. A novel method called multi-scale block centersymmetric LBP(MB-CSLBP) is proposed. It includes not only the image's microstructures but also macrostructures,which can give more information of the image. This method is tested on a database of 2040 near-infrared hand-dorsa vein images using MB-CSLBP features and a nearest neighbor classifier. A large number of experimental results show that the proposed method offers a better recognition result of 98.21%,outperforming the original LBP and improved LBP operators,such as CS-LBP and MB-LBP.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (205) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频