<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 37 Issue 6
Jul.  2021
Turn off MathJax
Article Contents
YU Ming-xin, ZHOU Yuan-song, WANG Xiang-zhou, LIN Ying-zi, WANG Yu. Eye detection method using gray intensity information and support vector machines[J]. Chinese Journal of Engineering, 2015, 37(6): 804-811. doi: 10.13374/j.issn2095-9389.2015.06.019
Citation: YU Ming-xin, ZHOU Yuan-song, WANG Xiang-zhou, LIN Ying-zi, WANG Yu. Eye detection method using gray intensity information and support vector machines[J]. Chinese Journal of Engineering, 2015, 37(6): 804-811. doi: 10.13374/j.issn2095-9389.2015.06.019

Eye detection method using gray intensity information and support vector machines

doi: 10.13374/j.issn2095-9389.2015.06.019
  • Received Date: 2014-03-12
    Available Online: 2021-07-10
  • This article introduces an efficient eye detection method based on gray intensity information and support vector machines (SVM). Firstly, using the evidence that gray intensity variation in the eye region is obvious, an eye variance filter (EVF) was constructed. Within the selected eye search region, the eye variance filter was used to find out eye candidate regions. Secondly, a trained support vector machine classifier was employed to detect the precise eye location among these eye candidate regions. Lastly, the eye center, i. e., iris center, could be located by the proposed gray intensity information rate. The proposed method was evaluated on the BioID, FERET, and IMM face databases, respectively. The correct rates of eye detection on face images without glasses are 98.2%, 97.8% and 98.9% respectively and that with glasses is 94.9%. The correct rates of eye center localization are 90.5%, 88.3% and 96.1%, respectively. Compared with state-of-the-art methods, the proposed method achieves good detection performance.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (149) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频