<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 37 Issue 5
Jul.  2021
Turn off MathJax
Article Contents
LIU Xu, BAN Xiao-juan, CHEN Tan-hao, ZHANG Ya-lan. Fast neighbor search on GPU for Ghost SPH simulation[J]. Chinese Journal of Engineering, 2015, 37(5): 661-667. doi: 10.13374/j.issn2095-9389.2015.05.019
Citation: LIU Xu, BAN Xiao-juan, CHEN Tan-hao, ZHANG Ya-lan. Fast neighbor search on GPU for Ghost SPH simulation[J]. Chinese Journal of Engineering, 2015, 37(5): 661-667. doi: 10.13374/j.issn2095-9389.2015.05.019

Fast neighbor search on GPU for Ghost SPH simulation

doi: 10.13374/j.issn2095-9389.2015.05.019
  • Received Date: 2015-01-05
    Available Online: 2021-07-10
  • This paper presents a novel fast neighbor searching method. By using this method,fluid simulation based on smooth particle hydrodynamics(SPH) can be parallelized easily and run on graphic processing unit(GPU) with high efficiency. The neighbor searching method can search two or more kinds of particles,while saving their information in the same background grid. Ghost boundary particles are introduced to improve the accuracy of boundaries,which can enhance the fidelity of the fluid simulation. Experiments show that the proposed method is more efficient than the traditional SPH method based on GPU.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (213) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频